Applied Electromagnetic Waves

Slides:



Advertisements
Similar presentations
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 29 ECE
Advertisements

EMLAB 1 Solution of Maxwell’s eqs for simple cases.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 15 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.
Applied Electricity and Magnetism
Antennas Hertzian Dipole –Current Density –Vector Magnetic Potential –Electric and Magnetic Fields –Antenna Characteristics.
9. Radiation & Antennas Applied EM by Ulaby, Michielssen and Ravaioli.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 25 ECE 6340 Intermediate EM Waves 1.
Antennas and Radiation
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 23 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 35 ECE
Chapter 4 Linear Wire Antennas ECE 5318/6352 Antenna Engineering
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 12 ECE
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.
Prof. D. R. Wilton Notes 22 Antennas and Radiation Antennas and Radiation ECE 3317 [Chapter 7]
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1.
Applied Electricity and Magnetism
1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.
Introduction to CST MWS
ECE 1100: Introduction to Electrical and Computer Engineering Notes 10 Antennas Transmission and Reception of waves Wanda Wosik Associate Professor, ECE.
Elements of electromagnetic field theory and guided waves
Chapter 3 Antenna Types Part 1.
Electromagnetic Field Evaluation of Dipole Antennas in Half-Space Robert Daniels Penn State University Clemson University SURE Program Advisor: Prof Xiao.
Spring 2015 Notes 1 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 29 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 22 ECE 6340 Intermediate EM Waves 1.
Spring 2015 Notes 25 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Notes 15 ECE 6340 Intermediate EM Waves Fall 2016
Applied Electricity and Magnetism
ANTENNA THEORY by Constantine A. Balanis Chapter 4.5 – 4.7.2
Hertzian Dipole Current Density Vector Magnetic Potential
Notes 22 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 15.
Notes 27 ECE 6340 Intermediate EM Waves Fall 2016
Antenna Design for Zigbee System
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 41.
Notes 23 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 17.
ECE 6345 Fall 2015 Prof. David R. Jackson ECE Dept. Notes 11.
Seminar on Microwave and Optical Communication
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 12.
Notes 12 ECE 6340 Intermediate EM Waves Fall 2016
Notes 29 ECE 6340 Intermediate EM Waves Fall 2016
Microwave Engineering
Notes 5 ECE Microwave Engineering
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 15.
Microwave Engineering
Microwave Engineering
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 35.
Antenna Engineering EC 544
Antennas & Wave Propagation
Applied Electromagnetic Waves
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 38.
Applied Electromagnetic Waves Notes 6 Transmission Lines (Time Domain)
Notes 11 Transmission Lines
Notes 10 Transmission Lines (Reflection and Impedance)
Notes 32 ECE 3318 Applied Electricity and Magnetism
Applied Electromagnetic Waves
Notes 6 ECE 3318 Applied Electricity and Magnetism Coordinate Systems
Notes 8 ECE 3318 Applied Electricity and Magnetism Coulomb’s Law II
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 29.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 4.
Antenna Theory Chapter.4.7.4~4.8.1 Antennas
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 18.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 3.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 13.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 16.
Presentation transcript:

Applied Electromagnetic Waves ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 Notes 22 Antenna Patterns

Infinitesimal Dipole The infinitesimal dipole current element is shown below. The dipole moment (amplitude) is defined as Il. The infinitesimal dipole is the foundation for many practical wire antennas. From Maxwell’s equations we can calculate the fields radiated by this source (e.g., see Chapter 7 of the Shen and Kong textbook).

Infinitesimal Dipole (cont.) The exact fields of the infinitesimal dipole in spherical coordinates are

Infinitesimal Dipole (cont.) In the far field (r  ) we have: Hence, we can identify

Infinitesimal Dipole (cont.) The radiation pattern is shown below. -9 -3 -6 0 dB 30° 60° 120° 150° 45o HPBW = 90o

Infinitesimal Dipole (cont.) The directivity of the infinitesimal dipole is now calculated Hence

Infinitesimal Dipole (cont.) Evaluating the integrals, we have: Hence, we have

Infinitesimal Dipole (cont.) -9 -3 -6 0 dB 30° 60° 120° 150° The far-field pattern is shown, with the directivity labeled at two points.

Wire Antenna A center-fed wire antenna is shown below. Feed A good approximation to the current is:

Wire Antenna (cont.) A sketch of the current is shown below for two cases. Resonant dipole (l = 0 / 2, k0h =  / 2) Short dipole (l <<0) Use

Wire Antenna (cont.) Short Dipole The average value of the current is I0 / 2. Infinitesimal dipole: Short dipole (l <<0 / 2) Short dipole:

Wire Antenna (cont.) For an arbitrary length dipole wire antenna, we need to consider the radiation by each differential piece of the current. Far-field observation point Feed Infinitesimal dipole: Wire antenna:

Far-field observation point Wire Antenna (cont.) Far-field observation point Feed

Far-field observation point Wire Antenna (cont.) Far-field observation point Feed Note:

Far-field observation point Wire Antenna (cont.) Far-field observation point Feed It can be shown that this approximation is accurate when

Far-field observation point Wire Antenna (cont.) Far-field observation point Feed Hence we have:

Wire Antenna (cont.) We define the array factor of the wire antenna: We then have the following result for the far-field pattern of the wire antenna: Note: The term in front of the array factor is the far-field pattern of the unit-amplitude infinitesimal dipole.

Wire Antenna (cont.) Using our assumed approximate current function we have: Hence The result is (derivation omitted):

Wire Antenna (cont.) In summary, we have: Thus, we have:

Wire Antenna (cont.) For a resonant half-wave dipole antenna: or

Wire Antenna (cont.) The directivity is: The result (from numerical calculations) is:

Wire Antenna (cont.) Results

Wire Antenna (cont.) Radiated Power: Simplify using

Wire Antenna (cont.) Performing the  integral gives us After simplifying, the result is then

For a resonant antenna (l  0 / 2), Xin = 0. Wire Antenna (cont.) The radiation resistance is defined from Feed Circuit Model For a resonant antenna (l  0 / 2), Xin = 0.

The radiation resistance is now evaluated. Wire Antenna (cont.) The radiation resistance is now evaluated. Using the previous formula for Prad, we have: Resonant l0 / 2 Dipole:

The result can be extended to the case of a monopole antenna Wire Antenna (cont.) The result can be extended to the case of a monopole antenna Feeding coax (see the next slide)

This can be justified as shown. Wire Antenna (cont.) + - Monopole This can be justified as shown. + - Dipole Virtual ground