In Voltaire’s “Elémens de la Theorie de Newton“ (1738) Harry Kroto 2004
Fraunhofer Absorption Lines in the Sun’s Spectrum Na D lines Orange street lamps contain sodium Harry Kroto 2004
Harry Kroto 2004
Emission Spectra from Nebulae Harry Kroto 2004
Harry Kroto 2004
Photon from local star Harry Kroto 2004
photoionisation Harry Kroto 2004
recombination Harry Kroto 2004
Harry Kroto 2004
Harry Kroto 2004
Harry Kroto 2004
H Atom ElectronicTransitions in the Radio Range Harry Kroto 2004
Hydrogen atom E = 2R/n3 Harry Kroto 2004
Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm) a300 = 0.5x10-3 cm = 0.005 mm Harry Kroto 2004
Energy Levels E(n) = - R/n2 Harry Kroto 2004
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) Harry Kroto 2004
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1 Harry Kroto 2004
For n= -1 emission lines Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1 For n= -1 emission lines Harry Kroto 2004
For n= -1 emission lines n2 = n+1 Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1 For n= -1 emission lines n2 = n+1 n1 = n Harry Kroto 2004
For n= -1 emission lines n2 = n+1 Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1 For n= -1 emission lines n2 = n+1 n1 = n Transition Frequencies F(n1) = - R[ 1/n22 – 1/n12] Harry Kroto 2004
For n= -1 emission lines n2 = n+1 101 Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1 For n= -1 emission lines n2 = n+1 101 100 n1 = n 100 Transition Frequencies F(n1) = - R[ 1/n22 – 1/n12] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] F(n) ~ R2n/n4 (for large n, n~n+1) Harry Kroto 2004
Transition Frequencies F(n1) = - R[1/n22 – 1/n12] F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] F(n) ~ R2n/n4 (for large n, n~n+1) F(n) ~ 2R/n3 Harry Kroto 2004
F(n) ~ 2x109678/n3 (cm-1) Harry Kroto 2004
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz Harry Kroto 2004
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz Accurate calculation 1/1012 -1/1002 Harry Kroto 2004
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz Accurate calculation 1/1012 -1/1002 = (0.980296 – 1)10-4 = -0.019704x10-4 Harry Kroto 2004
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz Accurate calculation 1/1012 -1/1002 = (0.980296 – 1)10-4 = -0.019704x10-4 0.216109 cm-1 = 6483.27 MHz Harry Kroto 2004
Hydrogen atom E = 2R/n3 Harry Kroto 2004