Migration Resolution.

Slides:



Advertisements
Similar presentations
Seismic Resolution Lecture 8 * Layer Thickness top 20 ms base
Advertisements

Atmospheric Refraction
Important Dates Rest of Term
Seismic Reflection Data Processing and Interpretation A Workshop in Cairo 28 Oct. – 9 Nov Cairo University, Egypt Dr. Sherif Mohamed Hanafy Lecturer.
Aerial View Eucalyi River, Peru Seismic View: 2 km Deep Meandering River.
Diffraction Physics 202 Professor Lee Carkner Lecture 24.
Exam II Review. Review of traveling wave interference Phase changes due to: Optical path length differences sources out of phase General solution.
PHY 1371Dr. Jie Zou1 Chapter 38 Diffraction and Polarization.
Specular-Ray Parameter Extraction and Stationary Phase Migration Jing Chen University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Physics 1402: Lecture 35 Today’s Agenda Announcements: –Midterm 2: graded soon … »solutions –Homework 09: Wednesday December 9 Optics –Diffraction »Introduction.
Occurs when wave encounters sharp discontinuities in the medium important in defining faults generally considered as noise in seismic sections seismic.
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Primary-Only Imaging Condition Yue Wang. Outline Objective Objective POIC Methodology POIC Methodology Synthetic Data Tests Synthetic Data Tests 5-layer.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
CROSSWELL IMAGING BY 2-D PRESTACK WAVEPATH MIGRATION
Reflection Field Methods
Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah.
Migration MigrationIntuitive Least Squares Green’s Theorem.
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Migration Resolution. Fresnel Zone T/2 L z z zL 2.
Midyear Overview of Year 2001 UTAM Results T. Crosby, Y. Liu, G. Schuster, D. Sheley, J. Sheng, H. Sun, J. Yu and M. Zhou J. Yu and M. Zhou.
Basic Seismic Processing INPUT FILTER CMP Gather NMO STACK MIGRATE DISPLAY GEOM VEL ANAL STATICS MUTE.
Chapter 25: Interference and Diffraction
Interference at slits and diffraction gratings. Diffraction and the Wave Nature of Light Diffraction is a wave effect. That is, it occurs because light.
Find the period of the function y = 4 sin x
PHY 102: Waves & Quanta Topic 8 Diffraction II John Cockburn Room E15)
Multiple-Slit Interference Uniform slits, distance d apart. Light of wavelength. Screen L away “Thin” slits  compared to d) L >> d then path length difference.
Chapter 25:Optical Instruments Cameras Homework assignment : Read Chap.25, Sample exercises : 4,21,24,41,43  Principle of a camera ss’ D Intensity of.
Diffraction vs. Interference
Diffraction: single slit How can we explain the pattern from light going through a single slit? w screen L x.
SEISMIC RESOLUTION. NORMAL-INCIDENCE REFLECTION AND TRANSMISSION COEFFICIENTS WHERE:  1 = DENSITY OF LAYER 1 V 1 = VELOCITY OF LAYER 1  2 = DENSITY.
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
V.2 Wavepath Migration Overview Overview Kirchhoff migration smears a reflection along a fat ellipsoid, so that most of the reflection energy is placed.
Lecture 29 Physics 2102 Jonathan Dowling Ch. 36: Diffraction.
Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing.
Principal maxima become sharper Increases the contrast between the principal maxima and the subsidiary maxima GRATINGS: Why Add More Slits?
Superresolution Imaging with Resonance Scatterring Gerard Schuster, Yunsong Huang, and Abdullah AlTheyab King Abdullah University of Science and Technology.
PHYS 2022: Observational Astronomy Properties of Light and Optical Observations from the Earth.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Ultrasonic İmaging.
Fundamental of Optical Engineering Lecture 5.  Diffraction is any behavior of light which deviates from predictions of geometrical optics.  We are concerned.
Dipping layer reflection events and the common midpoint gather
Physics 1202: Lecture 26 Today’s Agenda Announcements: –Midterm 2: Friday Nov. 6… –Chap. 18, 19, 20, and 21 No HW for this week (midterm)No HW for this.
Resolution Extracted from a resource to College Physics by Serway and Faughn Chap 25.
1 Chapter 33: Interference and Diffraction Homework: 17, 31, 37, 55 Cover Sections: 1, 2, 3, 4, 6, 7 Omit Sectons: 5, 8.
G. Schuster, S. Hanafy, and Y. Huang, Extracting 200 Hz Information from 50 Hz Data KAUST Rayleigh Resolution ProfileSuperresolution Profile Sinc function.
 = 0.5  j  r j (  kk’ (  m kk’ /  z) 2  m ii’ =  j  r j  r j /  m ii’ + (  kk’  m kk’ /  m ii’  m kk’ /  z) (1) m 11 m 12.
Geology 5660/6660 Applied Geophysics 10 Feb 2016 © A.R. Lowry 2016 Last Time: Seismic Reflection Travel-Time Cont’d Dix Equations for multiple layers:
Resolution. 0 km 7 km 0 km 3 km m = L d T r = [L L] m 0 km 7 km T.
Ultrasound Physics Image Formation ‘97.
Zero-Offset Data d = L o ò r ) ( g = d dr r ) ( g = d
Primary-Only Imaging Condition And Interferometric Migration
Applied Geophysics Fall 2016 Umass Lowell
Imaging (and characterisation) of diffractors
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
Find sin 2x, cos 2x, and tan 2x from the given information: {image} Select the correct answer:
Migration Intuitive Least Squares Migration Green’s Theorem.
Diffraction vs. Interference
Fraunhofer Diffraction
Review calculation of Fresnel zones
Graphical Answers Fresnel Zone Circles Shallow Window Deep Window
I.1 Diffraction Stack Modeling
I.1 Diffraction Stack Modeling
CURVES.
Fraunhofer diffraction from Circular apertures:
Migration Resolution.
A B C c b a c A B H= a(sinB) B = drill plunge a =(cSinA/SinC)
Presentation transcript:

Migration Resolution

m = L d T T -1 r = [L L] m 0 km 3 km 0 km 7 km 0 km 7 km

Rayleigh Resolution  z 4 L L/2 z Dx = min. separation & distinguishable Dx  z L 4

Fresnel Zone T/2 L z  z L 4

Horizontal Resolution Formula For ZO Migration Intersection of Fresnel Zones Horiz. Res. = Far-Offset Traces

Horizontal Resolution Formula What is width of minimum For ZO Migration What is width of minimum Lateral cut at depth z? Horiz. Res. = Far-Offset Traces Intersection of Fresnel Zones

Horizontal Resolution Formula For ZO Migration (Farfield) x l 4 L = ~ z L z l 4 Lateral resolution gets better as L increases, wavelength decreases, and depth gets more shallow D x

Horizontal Resolution Formula For ZO Migration (Farfield) q q tan = = L/z ~ Small angle approx. valid when L>>z l 4 D x q sin = l 4 = L/z ~ q D x D x l 4 L = ~ z Goal: Formula for x D

Aperture Width is also Function of Layer Dip Angle and Depth

Conclusions ..  d(x, ) LSM: ZO Migration: m = (L L) L d T -1 LSM: m = L d T ZO Migration: ..  x d(x, ) A(x,x’)  xx’ = m(x’) Smear reflections along fat circles Far-Offset Traces = Better Hor. Res. Near-Offset Traces = Better Vert. Res. m = (L L) r T D x l 4 L = ~ z l/4 = D z .

Exercise Create a 6 point scatterer model, with each pair of point scatterers separated by a wavelength. Generate synthetic ZO data and migrate it. Determine if the resolution formula are validated by measuring the apparent x distance between adjacent point scatterers in the image. Use mesh to display image. l D x l 2 L = ~ z l = 100 m 2 km 2 km