Lecture 10 – Introduction to Weka

Slides:



Advertisements
Similar presentations
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Advertisements

Florida International University COP 4770 Introduction of Weka.
Combining Classification and Model Trees for Handling Ordinal Problems D. Anyfantis, M. Karagiannopoulos S. B. Kotsiantis, P. E. Pintelas Educational Software.
Weka & Rapid Miner Tutorial By Chibuike Muoh. WEKA:: Introduction A collection of open source ML algorithms – pre-processing – classifiers – clustering.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
WEKA (sumber: Machine Learning with WEKA). What is WEKA? Weka is a collection of machine learning algorithms for data mining tasks. Weka contains.
WEKA Evaluation of WEKA Waikato Environment for Knowledge Analysis Presented By: Manoj Wartikar & Sameer Sagade.
Introduction to Weka and NetDraw
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
March 25, 2004Columbia University1 Machine Learning with Weka Lokesh S. Shrestha.
An Extended Introduction to WEKA. Data Mining Process.
1 Statistical Learning Introduction to Weka Michel Galley Artificial Intelligence class November 2, 2006.
Machine Learning with WEKA. WEKA: the bird Copyright: Martin Kramer
1 How to use Weka How to use Weka. 2 WEKA: the software Waikato Environment for Knowledge Analysis Collection of state-of-the-art machine learning algorithms.
CSCI 347 / CS 4206: Data Mining Module 05: WEKA Topic 04: Data Preparation Tools.
CSCI 347 / CS 4206: Data Mining Module 05: WEKA Topic 01: WEKA Navigation.
 The Weka The Weka is an well known bird of New Zealand..  W(aikato) E(nvironment) for K(nowlegde) A(nalysis)  Developed by the University of Waikato.
Contributed by Yizhou Sun 2008 An Introduction to WEKA.
Department of Computer Science, University of Waikato, New Zealand Geoff Holmes WEKA project and team Data Mining process Data format Preprocessing Classification.
WEKA – Knowledge Flow & Simple CLI
WEKA and Machine Learning Algorithms. Algorithm Types Classification (supervised) Given -> A set of classified examples “instances” Produce -> A way of.
Appendix: The WEKA Data Mining Software
In part from: Yizhou Sun 2008 An Introduction to WEKA Explorer.
Hands-on predictive models and machine learning for software Foutse Khomh, Queen’s University Segla Kpodjedo, École Polytechnique de Montreal PASED - Canadian.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Machine Learning with Weka Cornelia Caragea Thanks to Eibe Frank for some of the slides.
Weka: Experimenter and Knowledge Flow interfaces Neil Mac Parthaláin
W E K A Waikato Environment for Knowledge Analysis Branko Kavšek MPŠ Jožef StefanNovember 2005.
Artificial Neural Network Building Using WEKA Software
1 1 Slide Using Weka. 2 2 Slide Data Mining Using Weka n What’s Data Mining? We are overwhelmed with data We are overwhelmed with data Data mining is.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
BOĞAZİÇİ UNIVERSITY DEPARTMENT OF MANAGEMENT INFORMATION SYSTEMS MATLAB AS A DATA MINING ENVIRONMENT.
Weka – A Machine Learning Toolkit October 2, 2008 Keum-Sung Hwang.
Introduction to Weka Xingquan (Hill) Zhu Slides copied from Jeffrey Junfeng Pan (UST)
 A collection of open source ML algorithms ◦ pre-processing ◦ classifiers ◦ clustering ◦ association rule  Created by researchers at the University.
W E K A Waikato Environment for Knowledge Aquisition.
An Exercise in Machine Learning
***Classification Model*** Hosam Al-Samarraie, PhD. CITM-USM.
Weka Tutorial. WEKA:: Introduction A collection of open source ML algorithms – pre-processing – classifiers – clustering – association rule Created by.
Weka. Weka A Java-based machine vlearning tool Implements numerous classifiers and other ML algorithms Uses a common.
Machine Learning with WEKA - Yohan Chin. WEKA ? Waikato Environment for Knowledge Analysis A Collection of Machine Learning algorithms for data tasks.
WEKA's Knowledge Flow Interface Data Mining Knowledge Discovery in Databases ELIE TCHEIMEGNI Department of Computer Science Bowie State University, MD.
In part from: Yizhou Sun 2008 An Introduction to WEKA Explorer.
@relation age sex { female, chest_pain_type { typ_angina, asympt, non_anginal,
WEKA: A Practical Machine Learning Tool WEKA : A Practical Machine Learning Tool.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Detecting Web Attacks Using Multi-Stage Log Analysis
An Introduction to WEKA
Machine Learning: Decision Trees in AIMA and WEKA
An Introduction to WEKA
Machine Learning: Decision Trees in AIMA and WEKA
Machine Learning with WEKA
Waikato Environment for Knowledge Analysis
WEKA.
Sampath Jayarathna Cal Poly Pomona
An Introduction to WEKA
Machine Learning with WEKA
Machine Learning with WEKA
Weka Package Weka package is open source data mining software written in Java. Weka can be applied to your dataset from the GUI, the command line or called.
Machine Learning with Weka
An Introduction to WEKA
Tutorial for WEKA Heejun Kim June 19, 2018.
Machine Learning with Weka
Machine Learning with WEKA
Statistical Learning Introduction to Weka
Copyright: Martin Kramer
Machine Learning: Decision Trees in AIMA and WEKA
Data Mining CSCI 307, Spring 2019 Lecture 7
Data Mining CSCI 307, Spring 2019 Lecture 8
Presentation transcript:

Lecture 10 – Introduction to Weka CS 795/895 Introduction to Data Science Lecture 10 – Introduction to Weka Dr. Sampath Jayarathna Cal Poly Pomona

Todays Workshop! What is WEKA? The Explorer: KnowledgeFlow Preprocess data Classification Clustering Attribute Selection Data Visualization KnowledgeFlow Visual Modeler

What is WEKA? Waikato Environment for Knowledge Analysis It’s a data mining/machine learning tool developed by Department of Computer Science, University of Waikato, New Zealand. Weka is also a bird found only on the islands of New Zealand. Website: http://www.cs.waikato.ac.nz/ml/weka/ Support multiple platforms (written in java): Windows, Mac OS X and Linux

Main Features 49 data preprocessing tools 76 classification/regression algorithms 8 clustering algorithms 3 algorithms for finding association rules 15 attribute/subset evaluators + 10 search algorithms for feature selection

WEKA GUI Main components “The Explorer” (exploratory data analysis) “The Experimenter” (experimental environment) “The KnowledgeFlow” (process model inspired interface) “Simple CLI” (Command Line interface)

Todays Workshop! What is WEKA? The Explorer: KnowledgeFlow Preprocess data Classification Attribute Selection KnowledgeFlow

Explorer: pre-processing the data Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary Data can also be read from a URL or from an SQL database (using JDBC) Pre-processing tools in WEKA are called “filters” WEKA contains filters for: Discretization, normalization, resampling, attribute selection, transforming and combining attributes, …

WEKA “arff” format @relation heart-disease-simplified @attribute age numeric @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol real @attribute exercise_induced_angina { yes, no} @attribute class { present, not_present} @data 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present ... Numeric attribute Nominal attribute Nominal – variables with no inherent order or ranking sequence such as Gender, Race etc. Ordinal – Variables with an ordered series, such as blood group, performance etc. Binary – variables with only 2 options, pass/fail, yes/no All above are Qualitative. Quantitative: Discrete and Continues Missing value represented by ?

Explorer: building “classifiers” Classifiers in WEKA are models for predicting nominal or numeric quantities or classes Implemented classifiers include: Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, … Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, …

4/16/2019 University of Waikato

Exercise Load iris.arff dataset from Weka 3.8.1\data Use KNN classifier and modify the value of K=1, K=3, K=5 and report the accuracy

Feature Selection (filter method)

Todays Workshop! What is WEKA? The Explorer: KnowledgeFlow Preprocess data Classification Attribute Selection KnowledgeFlow

Knowledge Flow Interface “Visual: drag-and-drop” user interface for WEKA - intuitive Java-Beans-based Can do everything that Explorer does (plus a bit more), but not as comprehensively as Experimenter Data sources, classifiers, etc. are beans and can be connected graphically Data “flows” through modules: e.g., “data source” ->“filter” ->“classifier”-> “evaluator” KF layouts can be saved and re-used later

Knowledge Flow: An Example What we want to do: Take a dataset Do some attribute selection Perform some classification on the reduced data using 10 fold CV Examine the subsets selected for each CV fold Visualize the results in text format and curves

Getting Started

Class Assigner

Cross Validation Fold Maker

Classifier

Classifier Performance Evaluator

TextViewers can be used for visualization of results as well as examining the processes

TextViewers can be used for visualization of results as well as examining the processes

Run Classifier Load data from ArffLoader (right click>configure) Remember to add following into your KnowledgeFlow ClassValuePicker between ClassAssigner and CrossValidationFoldMaker Add ModelPerformanceChart from Visualization Assign class from ClassAssigner Connect dataset from all to Cross Validation Get Training and Testing set to classifier Send batch classifier to performance evaluator

Run multiple classifiers

Conclusion Explorer and Knowledge Flow: Offer useful and flexible ways to perform a range of batches of experiments Beware of the way in which results are generated! KF is particularly useful for visualization Just a snapshot of capabilities of WEKA!