Isaac Gang University of Mary Hardin-Baylor

Slides:



Advertisements
Similar presentations
Computer Graphics - Transformation -
Advertisements

1Computer Graphics Homogeneous Coordinates & Transformations Lecture 11/12 John Shearer Culture Lab – space 2
Transformations Ed Angel Professor Emeritus of Computer Science
2/7/2001Hofstra University – CSC290B1 Review: Math (Ch 4)
CS5500 Computer Graphics March 22, Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002 Coordinate-Free Geometry When we learned simple.
1 CSCE 441 Computer Graphics: 2D Transformations Jinxiang Chai.
Chapter 3: Geometric Objects and Transformations Part 2
Transformations. 2 Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002 Coordinate-Free Geometry When we learned simple geometry, most of us.
Transformations CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
2D Transformations x y x y x y. 2D Transformation Given a 2D object, transformation is to change the object’s Position (translation) Size (scaling) Orientation.
2D Transformations Unit - 3. Why Transformations? In graphics, once we have an object described, transformations are used to move that object, scale it.
Geometric Objects and Transformations Geometric Entities Representation vs. Reference System Geometric ADT (Abstract Data Types)
CS 480/680 Computer Graphics Representation Dr. Frederick C Harris, Jr. Fall 2012.
Geometric Transformation. So far…. We have been discussing the basic elements of geometric programming. We have discussed points, vectors and their operations.
CS 480/680 Computer Graphics Transformations Dr. Frederick C Harris, Jr.
Computer Graphics Bing-Yu Chen National Taiwan University.
Graphics Graphics Korea University kucg.korea.ac.kr Transformations 고려대학교 컴퓨터 그래픽스 연구실.
Dx = 2 dy = 3 Y X D Translation A translation is applied to an object by repositioning it along a straight-line path.
Intro to 3D Models Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
Transformations Jehee Lee Seoul National University.
Transformations Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
Geometric Objects and Transformation
16/5/ :47 UML Computer Graphics Conceptual Model Application Model Application Program Graphics System Output Devices Input Devices API Function.
CSE Real Time Rendering Week 5. Slides(Some) Courtesy – E. Angel and D. Shreiner.
Review on Graphics Basics. Outline Polygon rendering pipeline Affine transformations Projective transformations Lighting and shading From vertices to.
C O M P U T E R G R A P H I C S Guoying Zhao 1 / 73 C O M P U T E R G R A P H I C S Guoying Zhao 1 / 73 Computer Graphics Three-Dimensional Graphics II.
Computer Graphics I, Fall 2010 Transformations.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
CSCE 441 Computer Graphics: 2D Transformations
Transformations. Transformations Introduce standard transformations ◦ Rotation ◦ Translation ◦ Scaling ◦ Shear Derive homogeneous coordinate transformation.
Objectives Introduce standard transformations Introduce standard transformations Derive homogeneous coordinate transformation matrices Derive homogeneous.
2D Geometry - points and polygons
CS5500 Computer Graphics March 6, 2006.
Introduction to Computer Graphics with WebGL
Geometric Transformations
Transformations Objectives
Coordinate Change.
Geometric Transformations Hearn & Baker Chapter 5
Computer Graphics Transformations.
2D Transformations with Matrices
3D Transformation.
Computer Graphics Lecture 18 3-D Transformations-II Taqdees A
3D Geometric Transformations
Computer Graphics Transformations.
Introduction to Computer Graphics CS 445 / 645
2D Transformations y y x x y x.
Computer Graphics Transformations
OpenGL Transformations
Isaac Gang University of Mary Hardin-Baylor
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
CSC4820/6820 Computer Graphics Algorithms Ying Zhu Georgia State University Transformations.
2-D Geometry.
Chapter IV Spaces and Transforms
Transformations in 3 Dimensions CS /28/2018 Dr. Mark L. Hornick
Isaac Gang University of Mary Hardin-Baylor
Isaac Gang University of Mary Hardin-Baylor
Geometric Transformations
2D Geometric Transformations
Transformations 고려대학교 컴퓨터 그래픽스 연구실 kucg.korea.ac.kr.
Transformations in OpenGL
Geometric Transformations
Transformations Ed Angel
Geometric Objects and Transformations (II)
Transformations Ed Angel Professor Emeritus of Computer Science
Rendering – Matrix Transformations and the Graphics Pipeline
TWO DIMENSIONAL TRANSFORMATION
Geometry Objects and Transformation
Translation in Homogeneous Coordinates
Presentation transcript:

Isaac Gang University of Mary Hardin-Baylor Transformations Isaac Gang University of Mary Hardin-Baylor E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives Introduce standard transformations Rotation Translation Scaling Shear Derive homogeneous coordinate transformation matrices Learn to build arbitrary transformation matrices from simple transformations E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Transformations A transformation maps points to other points and/or vectors to other vectors v=T(u) Q=T(P) E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations Line preserving Characteristic of many physically important transformations Rigid body transformations: rotation, translation Scaling, shear Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Pipeline Implementation (from application program) frame buffer u T(u) transformation rasterizer v T(v) T(v) T(v) v T(u) u T(u) vertices vertices pixels E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notation P,Q, R: points in an affine space We will be working with both coordinate-free representations of transformations and representations within a particular frame P,Q, R: points in an affine space u, v, w: vectors in an affine space a, b, g: scalars p, q, r: representations of points -array of 4 scalars in homogeneous coordinates u, v, w: representations of points E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation Move (translate, displace) a point to a new location Displacement determined by a vector d Three degrees of freedom P’=P+d P’ d P E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

How many ways? Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way object translation: every point displaced by same vector E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation Using Representations Using the homogeneous coordinate representation in some frame p=[ x y z 1]T p’=[x’ y’ z’ 1]T d=[dx dy dz 0]T Hence p’ = p + d or x’=x+dx y’=y+dy z’=z+dz note that this expression is in four dimensions and expresses point = vector + point E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Translation Matrix We can also express translation using a 4 x 4 matrix T in homogeneous coordinates p’=Tp where T = T(dx, dy, dz) = This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation (2D) Consider rotation about the origin by q degrees radius stays the same, angle increases by q x = r cos (f + q) y = r sin (f + q) x’=x cos q –y sin q y’ = x sin q + y cos q x = r cos f y = r sin f E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about the z axis Rotation about z axis in three dimensions leaves all points with the same z Equivalent to rotation in two dimensions in planes of constant z or in homogeneous coordinates p’=Rz(q)p x’=x cos q –y sin q y’ = x sin q + y cos q z’ =z E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation Matrix R = Rz(q) = E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about x and y axes Same argument as for rotation about z axis For rotation about x axis, x is unchanged For rotation about y axis, y is unchanged R = Rx(q) = R = Ry(q) = E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scaling Expand or contract along each axis (fixed point of origin) x’=sxx y’=syx z’=szx p’=Sp S = S(sx, sy, sz) = E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Reflection corresponds to negative scale factors sx = -1 sy = 1 original sx = -1 sy = -1 sx = 1 sy = -1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Inverses Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) Although we could compute inverse matrices by general formulas, we can use simple geometric observations Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) Rotation: R -1(q) = R(-q) Holds for any rotation matrix Note that since cos(-q) = cos(q) and sin(-q)=-sin(q) R -1(q) = R T(q) Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Concatenation We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p The difficult part is how to form a desired transformation from the specifications in the application E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Order of Transformations Note that matrix on the right is the first applied Mathematically, the following are equivalent p’ = ABCp = A(B(Cp)) Note many references use column matrices to represent points. In terms of column matrices p’T = pTCTBTAT E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Rotation About the Origin A rotation by q about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes R(q) = Rz(qz) Ry(qy) Rx(qx) y v q qx qy qz are called the Euler angles Note that rotations do not commute We can use rotations in another order but with different angles x z E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation About a Fixed Point other than the Origin Move fixed point to origin Rotate Move fixed point back M = T(pf) R(q) T(-pf) E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instancing In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size We apply an instance transformation to its vertices to Scale Orient Locate E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shear Helpful to add one more basic transformation Equivalent to pulling faces in opposite directions E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shear Matrix Consider simple shear along x axis H(q) = x’ = x + y cot q y’ = y z’ = z H(q) = E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012