Googles Auction for TV ads Noam Nisan Tel-Aviv and Hebrew University Joint work with: Jason Bayer, Deepak Chandra, Tal Franji, Robert Gardner, Yossi Matias,

Slides:



Advertisements
Similar presentations
Bidding to the Top: Position-based Auctions Gagan Aggarwal Joint work with Jon Feldman and S. Muthukrishnan.
Advertisements

Combinatorial Auctions with Complement-Free Bidders – An Overview Speaker: Michael Schapira Based on joint works with Shahar Dobzinski & Noam Nisan.
An Efficient Dynamic Auction for Heterogeneous Commodities (Lawrence M.Ausubel - september 2000) Authors: Oren Rigbi Damian Goren.
Testing Linear Pricing Algorithms for use in Ascending Combinatorial Auctions (A5) Giro Cavallo David Johnson Emrah Kostem.
Conditional Equilibrium Outcomes via Ascending Price Processes Joint work with Hu Fu and Robert Kleinberg (Computer Science, Cornell University) Ron Lavi.
Slide 1 of 31 Noam Nisan Approximation Mechanisms: computation, representation, and incentives Noam Nisan Hebrew University, Jerusalem Based on joint works.
Algorithmic mechanism design Vincent Conitzer
CPSC 455/555 Combinatorial Auctions, Continued… Shaili Jain September 29, 2011.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
CPS Bayesian games and their use in auctions Vincent Conitzer
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Sep. 8, 2014 Lirong Xia Introduction to MD (mooncake design or mechanism design)
Game Theory 1. Game Theory and Mechanism Design Game theory to analyze strategic behavior: Given a strategic environment (a “game”), and an assumption.
A Sufficient Condition for Truthfulness with Single Parameter Agents Michael Zuckerman, Hebrew University 2006 Based on paper by Nir Andelman and Yishay.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Sponsored Search Presenter: Lory Al Moakar. Outline Motivation Problem Definition VCG solution GSP(Generalized Second Price) GSP vs. VCG Is GSP incentive.
Bidding and Allocation in Combinatorial Auctions Noam Nisan Institute of Computer Science Hebrew University.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
6.896: Topics in Algorithmic Game Theory Lecture 14 Constantinos Daskalakis.
Revenue Maximization in Probabilistic Single-Item Auctions by means of Signaling Joint work with: Yuval Emek (ETH) Iftah Gamzu (Microsoft Israel) Moshe.
General Equilibrium Theory
General Equilibrium and Efficiency. General Equilibrium Analysis is the study of the simultaneous determination of prices and quantities in all relevant.
Bundling Equilibrium in Combinatorial Auctions Written by: Presented by: Ron Holzman Rica Gonen Noa Kfir-Dahav Dov Monderer Moshe Tennenholtz.
Algorithmic Applications of Game Theory Lecture 8 1.
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
Social Networks 101 P ROF. J ASON H ARTLINE AND P ROF. N ICOLE I MMORLICA.
Yang Cai Sep 24, An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problems Vickrey-Clarke-Groves.
1 An Analysis for Troubled Assets Reverse Auction Saeed Alaei (University of Maryland-College Park) Azarakhsh Malekian (University of Maryland-College.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
Truthful Randomized Mechanisms for Combinatorial Auctions Speaker: Shahar Dobzinski Joint work with Noam Nisan and Michael Schapira.
Mechanisms for a Spatially Distributed Market Moshe Babaioff, Noam Nisan and Elan Pavlov School of Computer Science and Engineering Hebrew University of.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Arbitrage in Combinatorial Exchanges Andrew Gilpin and Tuomas Sandholm Carnegie Mellon University Computer Science Department.
The Science of Networks 7.1 Today’s topics Sponsored Search Markets Acknowledgements Notes from Nicole Immorlica & Jason Hartline.
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
CPS 173 Mechanism design Vincent Conitzer
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
Mechanism Design CS 886 Electronic Market Design University of Waterloo.
Combinatorial Auctions ( Bidding and Allocation) Adapted from Noam Nisan.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
Approximating Market Equilibria Kamal Jain, Microsoft Research Mohammad Mahdian, MIT Amin Saberi, Georgia Tech.
Econ 208 Marek Kapicka Lecture 3 Basic Intertemporal Model.
Slide 1 of 16 Noam Nisan The Power and Limitations of Item Price Combinatorial Auctions Noam Nisan Hebrew University, Jerusalem.
CHAPTER 31 PRODUCTION. The Robinson Crusoe Economy One consumer and one firm; The consumer owns the firm; Preference: over leisure and coconuts; Technology:
Steffen Staab 1WeST Web Science & Technologies University of Koblenz ▪ Landau, Germany Network Theory and Dynamic Systems Auctions.
2012. HERE IS THE THING…  Over 20% Of Your Market Doesn’t Subscribe To Cable…  That Means Your Advertising Campaign Is Only 80% Effective!  Television.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Marek Kapicka Lecture 2 Basic Intertemporal Model
Algorithmic Mechanism Design Shuchi Chawla 11/7/2001.
Managerial Economics. What is Managerial Economics???  It is the integration of economic principles with business management practices  It is essentially.
Bayesian Algorithmic Mechanism Design Jason Hartline Northwestern University Brendan Lucier University of Toronto.
The Role of Prices in the Free Market. Prices in the Free Market In the free market prices are a tool for distributing They are nearly always the most.
Comp/Math 553: Algorithmic Game Theory Lecture 10
False-name Bids “The effect of false-name bids in combinatorial
Combinatorial Public Projects
Near-Optimal Spectrum Allocation for Cognitive Radios: A Frequency-Time Auction Perspective Xinyu Wang Department of Electronic Engineering Shanghai.
CPS Mechanism design Michael Albert and Vincent Conitzer
Multi-Item Auctions.
Comp/Math 553: Algorithmic Game Theory Lecture 09
Internet Economics כלכלת האינטרנט
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Combinatorial Auctions (Bidding and Allocation)
Authors: Oren Rigbi Damian Goren
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Presentation transcript:

Googles Auction for TV ads Noam Nisan Tel-Aviv and Hebrew University Joint work with: Jason Bayer, Deepak Chandra, Tal Franji, Robert Gardner, Yossi Matias, Neil Rhodes, Misha Seltzer, Danny Tom, Hal Varian, Dan Zigmond

sells TV ads Google has deals with TV publishers (networks, cable companies) that let it sell some of their ad-spot inventory. –Over 100 channels, some local, some national Google auctions this inventory among interested advertisers on a daily basis. Buying TV spots this way is web-based.

Outside the scope of this talk Why is Google doing this? What are its future plans? What is its competitive advantage? What kinds of deals does Google have? How much money is Google making?

Scope of this talk The auction mechanism –In operation since Sept 2008 What we did & theoretical perspective –The good, the bad, and the ugly No numbers –Some I dont know, some I cant tell…. Only passing mention of the whole system –Whole system in operation about 2 years

Buying TV ads from Google Why buy from Google? –Web-based: easy, fast, flexible, day-to-day –Aggregation with precise targeting –Excellent feedback / reporting allows optimization Actual number of viewers, tune-out info, … Workflow for advertisers: 1.Upload ad video 2.Enter desired targets and your bid 3.Everyday: The auction runs, your ad is scheduled and aired, you get a detailed report, and you pay Google (and then Google pays publishers.)

Choose Target

Specify Bid

Daily Auction Process Publishers Daily Inventory Advertisers Bid DB Auction runs daily Schedule Pricing Google bills advertisers Publishers receive & air ad schedule Cpm price #viewers

Rest of Talk Basic theoretical model Auction goals The ascending auction –Good and bad The ugly

Basic Model Input m slots for sale; slot j has reserve price r j 0 n bidders. Bidder i has: –Budget limit b i –Value v ij for each slot j Output Set of slots S i won by each bidder i. Price p j for each slot j Obvious Constraints S i disjoint r j p j v ij (for j in S i ) j in S i p j b i Optimization Goals Revenue Efficiency (total value) Fairness (?) Incentive Compatibility

Bidders are strategic –They will mis-report their value or budget if that helps them Our Auction should produce the desired results even when bidders act strategically Best if Auction rules themselves discourage any strategic behavior –I.C. = truthful = strategy-proof Revelation Principle: this is wlog

Optimize? Difficult example: –100 slots –Alice: bid value=$25, budget=$50 –Bob: bid value = $5, budget=$150 Optimize Revenue: Maximize j p j ? –Alice: 2 slots * $25 –Bob: 30 slots * $5 –Other 68 slots can go anywhere Optimize Social Welfare: Maximize j in S i v ij ? –Alice: 100 slots, at whatever cost $50 –Budgets ignored in allocation

Econ 101 Example: –100 slots –Alice: bid value=$25, budget=$50 –Bob: bid value = $5, budget=$150 Solve: demand=supply: –D(p) = 200/p for p $5 –D(p) = 50/p for $5 < p $25 –D(p) = 0 for $25 < p Solution: D(p)=100 when p=$2 –Alice: 25 slots * $2 –Bob: 75 slots * $2

Walrasian Equilibrium Definition: S is the demand of i at prices p 1 …p m if it is within budget ( j in S p j b i ) and it maximizes utility. I.e. for every T within budget we have that j in T (v ij -p j ) j in S (v ij -p j ). Definition: S 1 …S n and p 1 …p m are at an equilibrium if: For every i, S i is the demand of i All items j are allocated, except perhaps those with r j = p j

The continuous case If slots were infinitely divisible then: A Walrasian Equilibrium always exists It is Pareto Efficient (first welfare theorem) It exhausts the budgets of all bidders that bid > market price on at least some slot When bidders are small (price takers) there is no incentive for under-bidding.

Our case Sometimes a Walrasian equilibrium doesnt exist at all. –Sometimes it does If it exists, then it is Pareto efficient and exhausts the budget of each bidder up to the price of the cheapest slot for which it bid at least market. Sometimes it is incentive compatible.

Computing the Demand of i Input: p 1 …p m ; v i1 …v im ; b Output: S within budget ( j in S p j b i ) that maximizes j in S (v ij -p j ) Complexity: Knapsack NP-hard Optimal Fractional solution: –Greedily in order of decreasing v ij /p j Why not FPTAS? –Speed, Simplicity, and Extendibility –Stability over multiple calls –Budget limit not really sharp

Simultaneous Ascending Auction Demange-Gale-Sotomayer, Kelso-Crawford, … Initialize: p j = r j ; S i = Ø ; Q all bidders While Q not empty –i Q.deque() –S i demand(i) –At current prices; but +δ for j not in S i –For all slots j taken from others do p j p j +δ –For all k that had slots taken do Q.enque(k)

Analysis Prices only increase at most mv max /δ rounds After round with i dequed, S i = demand(i) Remains true, when prices of un-owned slots increase –Invariant: for i not in Q: S i = demand(i) When algorithm terminates we have a (δ-) Walrasian equilibrium

Ignoring the bug BUG: slots may be left un-allocated…. Definition: Gross Substitutes = it doesnt happen Theorem: If Gross Substitutes then (δ-) Walrasian equilibrium [Kelso and Crawford] Example: Homogenous slots Also Incentive compatible if values<<budgets or budgets<<values Example: Unit demand – demand is never more than a single unit [Demange, Gale, and Sotomayer] An algorithm for maximum-weight bipartite matching Also final prices are VCG and thus incentive compatible

Remnant round Reality is not Gross substitutes Some slots remain un-allocated at the end What to do with these? Ignore and leave un-allocated? Our Solution: remnant-sale round Fix what was already sold Repeat: Reduce prices of unsold slots a bit Rerun simultaneous ascending auction Until all unsold slots are at reserve price

Software Engineering Bidder is a central internal interface –Responsible only for the desires of a single advertiser –Can answer demand queries Arbitration between the different bidders is the responsibility of the main algorithm and is price-based.

Multiple ad lengths Standard Ad lengths may be 15sec, 30sec, 60sec, 90sec,120sec We use15sec slots Pricing difficulty: –$10 for 30sec vs. $7 for 15sec + $2 for 15sec –$10 for 30sec vs. $9 for 15sec + $9 for 15sec Our solution: –In main ascending auction, pay taken slot prices –In remnant round, pay for all slots of displaced ad

Crowding TV stations and advertisers often require some minimum gap between similar ads –By time or by commercial break –Per-creative, per advertiser, sometimes even per-industry Internal to demand logic Can be solved exactly using dynamic programming We just add condition in greedy algorithm

Noisy Budgets Daily budgets are only approximate: –Google allows up to 20% daily deviation –Actual costs depend on actual numbers of viewers and are only estimated Leaves room for policy decisions Leaves room for optimizations –Allow taking last spot if it is just a bit above Re-justifies the greedy demand logic

Unscheduled slots We do not really have free disposal: half filling a commercial break is not allowed. –Various rules Try to schedule public service announcements to fill commercial breaks. Release non-full breaks (and try re- scheduling)

Overlapping Auctions Sometimes we need to run an auction for some parts of the slot-inventory before the rest of the inventory is finalized. Problem: budget shared between the auctions. Solution: Use best estimate/prediction on non-finalized inventory; commit only to inventory you need to commit to.

Thank You!