Five-Minute Check (over Lesson 8–1) Mathematical Practices Then/Now

Slides:



Advertisements
Similar presentations
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 11–1) CCSS Then/Now New Vocabulary Key Concept: Symmetric and Skewed Distributions Example 1:
Advertisements

AP STATISTICS Simulation “Statistics means never having to say you're certain.”
Objectives Use simulations and hypothesis testing to compare treatments from a randomized experiment.
Why can I flip a coin 3 times and get heads all three times?
Lesson  In this investigation you will explore the predictability of random outcomes. You will use a familiar random process, the flip of a coin.
3.6: Probabilities Through Simulations Objective: To simulate probabilities using random number tables and random number generators CHS Statistics.
CCSS Content Standards G.MG.3 Apply geometric methods to solve problems (e.g., designing an object or structure to satisfy physical constraints or minimize.
Introduction to Probability
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 12–1) CCSS Then/Now New Vocabulary Example 1:Statistics and Parameters Key Concept: Mean Absolute.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 11–2) CCSS Then/Now New Vocabulary Example 1: Identify and Classify Random Variables Key Concept:
Probability Distributions. Essential Question: What is a probability distribution and how is it displayed?
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 13–3) CCSS Then/Now New Vocabulary Key Concept: Designing a Simulation Example 1:Design a Simulation.
Splash Screen. CCSS Mathematical Practices 4 Model with mathematics. Common Core State Standards © Copyright National Governors Association Center.
1.3 Simulations and Experimental Probability (Textbook Section 4.1)
Algebra 2 Mr. Gallo 11-2:Probability. Terms to Know Probability – is the ratio of the number of _______________________ to the ___________ number of possible.
AP STATISTICS LESSON 6-1 Simulation. ESSENTIAL QUESTION: How can simulation be used to solve problems involving chance? Objectives: To simulate problems.
Simulating Experiments Introduction to Random Variable.
Lesson 14-5 Probability Simulations. Transparency 5 Click the mouse button or press the Space Bar to display the answers.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 12–4) CCSS Then/Now New Vocabulary Example 1:Standardized Test Example: Find Experimental Probability.
Homework Questions. Simulations Unit 6 Experimental Estimates As the number of trials in an experiment increases, the relative frequency of an outcome.
5-Minute Check on Chapter 5 Click the mouse button or press the Space Bar to display the answers. 1.What can help detect “cause-and-effect” relationships?
Introduction Imagine the process for testing a new design for a propulsion system on the International Space Station. The project engineers wouldn’t perform.
Name:__________ warm-up 12-2 HEALTH CLUBS At a heath club, a random sample of members are asked some questions about dieting. Classify the sample as simple,
AP STATISTICS LESSON AP STATISTICS LESSON PROBABILITY MODELS.
Warm-up What is the best way to answer each of the questions below: an experiment, a sample survey, or an observational study that is not a sample survey?
Two-Way Relative Frequency Tables
Splash Screen.
Five-Minute Check (over Lesson 2–3) Mathematical Practices Then/Now
Splash Screen.
Mathematics for GCSE Science
Experiments vs. Observational Studies vs. Surveys and Simulations
Splash Screen.
Today is Tuesday.
Experimental Probability vs. Theoretical Probability
Splash Screen.
Splash Screen.
Chapter 3 Probability.
Unit 6 Probability.
Elementary Statistics: Picturing The World
LESSON 13–4 Simulations.
Three cards are randomly drawn from a standard deck of 52 playing cards without replacement. What is the probability of drawing a face card, followed.
Click the mouse button or press the Space Bar to display the answers.
Introduction In probability, events are either dependent or independent. Two events are independent if the occurrence or non-occurrence of one event has.
Splash Screen.
Click the mouse button or press the Space Bar to display the answers.
Chapter 3 Probability.
Probability of Mutually Exclusive Events
Determine whether each situation calls for a survey, an experiment, or an observational study. Explain your reasoning. You want to find opinions on the.
Probability Day One - Review
Splash Screen.
Warm Up 1) A t-shirt company makes shirts in sizes S, M, L, XL and XXL and in the colors chartreuse, burgundy, fuchsia and mauve. How many different types.
Warmup - Just put on notes page
Probabilities of Independent and Dependent Events
Day 1 Parameters, Statistics, and Sampling Methods
CHAPTER 5 Probability: What Are the Chances?
Day 1 Parameters, Statistics, and Sampling Methods
Probability using Simulations
Lesson #8 Guided Notes.
Splash Screen.
M248: Analyzing data Block A UNIT A3 Modeling Variation.
Splash Screen.
Splash Screen.
Five-Minute Check (over Lesson 12–4) Mathematical Practices Then/Now
Statistics and Probability-Part 5
Probability and predicting
Five-Minute Check (over Lesson 12–6) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 12–7) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 12–5) Mathematical Practices Then/Now
Warm-Up Honors Algebra /11/19
Presentation transcript:

Five-Minute Check (over Lesson 8–1) Mathematical Practices Then/Now New Vocabulary Example 1: Real world Example: Design a Simulation Example 2: Design a Simulation by Using Random Numbers Example 3: Conduct and Evaluate a Simulation Example 4: Conduct and Summarize Data from a Simulation Lesson Menu

Determine whether the situation calls for a survey, an experiment, or an observational study. Explain. MOVIES A production studio played a movie for a test audience and watched their reactions. A. Survey; members of the sample are observed and asked their opinions. B. Experiment; members of the sample are observed and affected by the study. C. Observational study; members of the sample are observed and unaffected by the study. D. Experiment; members of the sample are treated and affected by the study. 5-Minute Check 1

B. Survey; members of the sample are asked for their opinions. Determine whether the situation calls for a survey, an experiment, or an observational study. Explain. AUTHORS At a library, every 10th person is asked some questions about their favorite author. A. Survey; members of the sample are observed and unaffected by the study. B. Survey; members of the sample are asked for their opinions. C. Observational study; members of the sample are observed and unaffected by the study. D. Experiment; members of the sample are treated and affected by the study. 5-Minute Check 2

A. observational study; the kids are unaffected by the study TELEVISION The management of a detention center alters the colors of their walls then compares the behaviors of their kids with the kids where the colors were not changed. Determine whether the situation describes a survey, an observational study, or an experiment. Explain your reasoning. A. observational study; the kids are unaffected by the study B. observational study; the kids are affected by the study C. experiment; the kids are divided into two groups where one group is affected by the study D. experiment; the kids are divided into two groups but neither group is affected by the study 5-Minute Check 5

COLLEGE Mariana surveyed a random sample of 20% of the senior class about their college plans. She found that 18 seniors planned to go to an out-of-state college. What is the most reasonable inference about the number of seniors s in the school who plan to go to an out-of-state college? A. s = 36 B. s = 90 C. s = 180 D. s = 360 5-Minute Check 5

Mathematical Practices 1 Make sense of problems. 2 Reason abstractly and quantitatively. 3 Construct viable arguments. 4 Model with mathematics. Content Standards S.IC.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. MP

You calculated simple probability. Collect and analyze data by conducting simulations of real-life situations. Use data to compare theoretical and experimental probabilities. Then/Now

theoretical probability experimental probability relative frequency simulation probability model theoretical probability experimental probability relative frequency Vocabulary

Design a Simulation SOFTBALL Mandy is a pitcher on the softball team. Last season, 70% of her pitches were strikes. Design a simulation to estimate the probability that Mandy’s next pitch is a strike. Step 1 There are two possible outcomes: strike and no strike (a ball). Use Mandy’s expectation of strikes to calculate the theoretical probability of each outcome. Example 1

Design a Simulation Step 2 We can use the random number generator on a graphing calculator. Assign the integers 1-10 to accurately represent the probability data. Step 3 A trial will represent one pitch. The simulation can consist of any number of trials. We will use 50. Example 1

SCHOOL BUS Larry’s bus is late 60% of the time SCHOOL BUS Larry’s bus is late 60% of the time. Design a simulation that can be used to estimate the probability that his bus is late. A. Use a random number generator for 50 trials with integers 1 through 10. 1-6: the bus is late; 7-10: the bus is not late. B. Use a random number generator for 50 trials with integers 1 through 10. 1-6: the bus is not late; 7-10: the bus is late. C. Flip a coin for 50 trials. heads: the bus is late; tails: the bus is not late. D. Roll a die for 50 trials. 1-4: the bus is late; 5-6: the bus is not late. Example 1

Design a Simulation by Using Random Numbers PIZZA A survey of Longmeadow High School students found that 30% preferred cheese pizza, 30% preferred pepperoni, 20% preferred peppers and onions, and 20% preferred sausage. Design a simulation that can be used to estimate the probability that a Longmeadow High School student prefers each of these choices. Step 1 Possible Outcomes Theoretical Probability Cheese 30% Pepperoni 30% Peppers and onions 20% Sausage 20% Example 2

Design a Simulation by Using Random Numbers Step 2 We assume a student’s preferred pizza type will fall into one of these four categories. Step 3 Use the random number generator on your calculator. Assign the ten integers 0–9 to accurately represent the probability data. The actual numbers chosen to represent the outcomes do not matter. Outcome Represented by Cheese 0, 1, 2 Pepperoni 3, 4, 5 Peppers and onions 6, 7 Sausage 8, 9 Example 2

Design a Simulation by Using Random Numbers Step 4 A trial will consist of selecting a student at random and recording his or her pizza preference. The simulation will consist of 20 trials. Example 2

PETS A survey of Mountain Ridge High School students found that 20% wanted fish as pets, 40% wanted a dog, 30% wanted a cat, and 10% wanted a turtle. Which assignment of the ten integers 0–9 accurately reflects this data for a random number simulation? A. Fish: 0, 1, 2 B. Fish: 0, 1 Dog: 3, 4, 5, 6 Dog: 2, 3, 4, 5 Cat: 7, 8 Cat: 6, 7 Turtle: 9 Turtle: 8, 9 C. Fish: 0, 1 D. Fish: 0, 1 Dog: 2, 3, 4, 5, 6 Dog: 2, 3, 4, 5 Cat: 7, 8 Cat: 6, 7, 8 Turtle: 9 Turtle: 9 Example 2

Conduct and Evaluate a Simulation SOFTBALL Mandy is a pitcher on her high school softball team. Last season, 70% of her pitches were strikes. Conduct the simulation that can be used to estimate the probability that Mandy’s next pitch is a strike. Example 3

Conduct and Evaluate a Simulation Press and select [randInt (].Then press 1 , 10 , 50 ) ENTER . Use the left and right arrow buttons to view the results. Make a frequency table and record the results. Example 3

Calculate the experimental probabilities. Conduct and Evaluate a Simulation Calculate the experimental probabilities. Answer: Example 3

SCHOOL BUS Larry’s bus is late 60% of the time SCHOOL BUS Larry’s bus is late 60% of the time. Conduct a simulation that can be used to estimate the probability that his bus is late. Example 3

Conduct and Summarize Data from a Simulation SOCCER Last season, Yao made 18% of his free kicks. Conduct a simulation using 50 trials and report the results, using appropriate numerical and graphical summaries. Compare the experimental and theoretical probabilities. Example 4

Conduct and Summarize Data from a Simulation Answer: Answers will vary, but should include a frequency table from the simulation and the corresponding bar graph. Sample answer: P(Made Kick) = 22%, P(Missed Kick) = 78%. The experimental probability is very close to the theoretical probability of 18%. Example 4

Conduct and Summarize Data from a Simulation Answer: Answers will vary, but should include a frequency table from the simulation and the corresponding bar graph. Sample answer: P(Made Kick) = 22%, P(Missed Kick) = 78%. The experimental probability is very close to the theoretical probability of 18%. Example 4

Which one of these statements is not true about conducting a simulation to find probability? A. The experimental probability and the theoretical probability do not have to be equal probabilities. B. The more trials executed, generally the closer the experimental probability will be to the theoretical probability. C. Previous trials have an effect on the possible outcomes of future trials. D. Theoretical probability can be calculated without carrying out experimental trials. Example 4