Multiplying Polynomials

Slides:



Advertisements
Similar presentations
Polynomials and Factoring
Advertisements

Warm Up Add Multiply (8) (22)
Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2)
Multiplying Polynomials by Monomials
Multiplying Polynomials
Holt Algebra Multiplying Polynomials 7-7 Multiplying Polynomials Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Binomial Expansion Honors Advanced Algebra Presentation 2-3.
Multiplying Polynomials
Multiplying Polynomials by Monomials
Multiplying Polynomials
Warm Up Evaluate Simplify  (5 3 ) y 5  y (x 2 ) 4 8. –4(x – 7) –4x + 28 y9y9.
Multiplying Polynomials
MULTIPLICATION OF POLYNOMIALS CHAPTER 4 SECTION 5 MTH Algebra.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
x4 1. x(x3) 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2) 6x3 5. xy(7x2)
Multiplying and Factoring
Holt McDougal Algebra Multiplying Polynomials 7-8 Multiplying Polynomials Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Preview Warm Up California Standards Lesson Presentation.
Holt Algebra Multiplying Polynomials 7-7 Multiplying Polynomials Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Multiplying Polynomials
Holt CA Course Multiplying Polynomials by Monomials Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Problems of the Day Simplify each expression. 1. (9s3t2)(−3st)
Holt Algebra Multiplying Polynomials Multiply polynomials. Use binomial expansion to expand binomial expressions that are raised to positive integer.
ALGEBRA 1 Lesson 8-2 Warm-Up. ALGEBRA 1 This is an area model using Algebra Tiles. Simply model 3x + 1 on the top (length of rectangle) and 2x on the.
Problems of the Day Simplify each expression. 1. 9m 2 – 8m + 7m 2 2. (10r 2 + 4s 2 ) – (5r 2 + 6s 2 ) 3. (pq + 7p) + (6pq – 10p – 5pq) 4. (17d 2 – 4) –
Section 3-2 Multiplying Polynomials
Warm Up Multiply. Write each product as one power. 1. x · x · 63
Holt McDougal Algebra 2 Multiplying Polynomials Multiply polynomials. Use binomial expansion to expand binomial expressions that are raised to positive.
Holt McDougal Algebra Multiplying Polynomials Multiply polynomials. Use binomial expansion to expand binomial expressions that are raised to positive.
Holt McDougal Algebra 2 Multiplying Polynomials How do we multiply polynomials? How do we use binomial expansion to expand binomial expressions that are.
Holt McDougal Algebra Multiplying Polynomials Warm Up Evaluate Simplify  (5 3 ) y 5.
Holt McDougal Algebra Multiplying Polynomials Multiply polynomials. Use binomial expansion to expand binomial expressions that are raised to positive.
Essential Questions How do we multiply polynomials?
7-1 Integer Exponents 7-2 Powers of 10 and Scientific Notation 7-3 Multiplication Properties of Exponents 7-4 Division Properties of Exponents 7-5 Fractional.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
Warm Up Evaluate. 1. – (–2) 4 3. x – 2(3x – 1) 4. 3(y 2 + 6y) –5x + 2 Simplify each expression. – y y.
Holt McDougal Algebra Factoring by GCF Warm Up 1. 2(w + 1) 2. 3x(x 2 – 4) 2w + 2 3x 3 – 12x 2h2h Simplify. 13p Find the GCF of each pair of monomials.
Multiplying Polynomials
Multiplying Polynomials
Adding and Subtracting Polynomials
Chapter 6 - Polynomial Functions
Multiplying Polynomials
Warm Up Multiply. 1. x(x3) 2. 3x2(x5) 3. 2(5x3) 4. x(6x2) 5. xy(7x2)
Multiplying Polynomials
3-2 Multiplying polynomials
Warm Ups Preview 12-1 Polynomials 12-2 Simplifying Polynomials
8.6 Multiplying a Polynomial by a Monomial
Essential Questions How do we multiply polynomials?
Multiplying Polynomials
Multiplying Polynomials
Objectives Multiply polynomials.
Multiplying Polynomials
Warm Up Evaluate Simplify  (53)
Multiplying Polynomials
Multiplying Polynomials
Objectives Multiply polynomials.
Multiplying Polynomials
Multiplying Polynomials
Multiplying Polynomials
7-5 Polynomials Warm Up Lesson Presentation Lesson Quiz Holt Algebra 1.
Objectives Identify, evaluate, add, and subtract polynomials.
Multiplying Polynomials
(B12) Multiplying Polynomials
Problems of the Day Simplify each expression. 1. (x + 3)(x – 9)
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
  ?    .
Multiplying Polynomials
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
LEARNING GOALS – LESSON 6.2
Multiplying Polynomials
Presentation transcript:

Multiplying Polynomials 6-2 Multiplying Polynomials Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2

Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2) 5. xy(7x2) 7x3y 6. 3y2(–3y) –9y3

Objectives Multiply polynomials. Use binomial expansion to expand binomial expressions that are raised to positive integer powers.

To multiply a polynomial by a monomial, use the Distributive Property and the Properties of Exponents.

Example 1: Multiplying a Monomial and a Polynomial Find each product. A. 4y2(y2 + 3) 4y2(y2 + 3) 4y2  y2 + 4y2  3 Distribute. 4y4 + 12y2 Multiply. B. fg(f4 + 2f3g – 3f2g2 + fg3) fg(f4 + 2f3g – 3f2g2 + fg3) fg  f4 + fg  2f3g – fg  3f2g2 + fg  fg3 Distribute. f5g + 2f4g2 – 3f3g3 + f2g4 Multiply.

Check It Out! Example 1 Find each product. a. 3cd2(4c2d – 6cd + 14cd2) 3cd2(4c2d – 6cd + 14cd2) 3cd2  4c2d – 3cd2  6cd + 3cd2  14cd2 Distribute. 12c3d3 – 18c2d3 + 42c2d4 Multiply. b. x2y(6y3 + y2 – 28y + 30) x2y(6y3 + y2 – 28y + 30) x2y  6y3 + x2y  y2 – x2y  28y + x2y  30 Distribute. 6x2y4 + x2y3 – 28x2y2 + 30x2y Multiply.

To multiply any two polynomials, use the Distributive Property and multiply each term in the second polynomial by each term in the first. Keep in mind that if one polynomial has m terms and the other has n terms, then the product has mn terms before it is simplified.

Example 2A: Multiplying Polynomials Find the product. (a – 3)(2 – 5a + a2) Multiply horizontally. (a – 3)(a2 – 5a + 2) Write polynomials in standard form. Distribute a and then –3. a(a2) + a(–5a) + a(2) – 3(a2) – 3(–5a) –3(2) a3 – 5a2 + 2a – 3a2 + 15a – 6 Multiply. Add exponents. a3 – 8a2 + 17a – 6 Combine like terms.

Multiply horizontally. Write polynomials in standard form. Check It Out! Example 2a Find the product. (3b – 2c)(3b2 – bc – 2c2) Multiply horizontally. Write polynomials in standard form. (3b – 2c)(3b2 – 2c2 – bc) Distribute 3b and then –2c. 3b(3b2) + 3b(–2c2) + 3b(–bc) – 2c(3b2) – 2c(–2c2) – 2c(–bc) Multiply. Add exponents. 9b3 – 6bc2 – 3b2c – 6b2c + 4c3 + 2bc2 9b3 – 9b2c – 4bc2 + 4c3 Combine like terms.

Example 3: Business Application A standard Burly Box is p ft by 3p ft by 4p ft. A large Burly Box has 1.5 ft added to each dimension. Write a polynomial V(p) in standard form that can be used to find the volume of a large Burly Box. The volume of a large Burly Box is the product of the area of the base and height. V(p) = A(p)  h(p) The area of the base of the large Burly Box is the product of the length and width of the box. A(p) = l(p)  w(p) The length, width, and height of the large Burly Box are greater than that of the standard Burly Box. l(p) = p + 1.5, w(p) = 3p + 1.5, h(p) = 4p + 1.5

Example 3: Business Application Solve A(p) = l(p)  w(p). Solve V(p) = A(p)  h(p). p + 1.5 3p2 + 6p + 2.25  3p + 1.5  4p + 1.5 1.5p + 2.25 4.5p2 + 9p + 3.375 3p2 + 4.5p 12p3 + 24p2 + 9p 3p2 + 6p + 2.25 12p3 + 28.5p2 + 18p + 3.375 The volume of a large Burly Box can be modeled by V(p) = 12p3 + 28.5p2 + 18p + 3.375

Example 4: Expanding a Power of a Binomial Find the product. (a + 2b)3 (a + 2b)(a + 2b)(a + 2b) Write in expanded form. (a + 2b)(a2 + 4ab + 4b2) Multiply the last two binomial factors. Distribute a and then 2b. a(a2) + a(4ab) + a(4b2) + 2b(a2) + 2b(4ab) + 2b(4b2) a3 + 4a2b + 4ab2 + 2a2b + 8ab2 + 8b3 Multiply. a3 + 6a2b + 12ab2 + 8b3 Combine like terms.

Multiply the last two binomial factors. Check It Out! Example 4a Find the product. (x + 4)4 (x + 4)(x + 4)(x + 4)(x + 4) Write in expanded form. (x + 4)(x + 4)(x2 + 8x + 16) Multiply the last two binomial factors. (x2 + 8x + 16)(x2 + 8x + 16) Multiply the first two binomial factors. Distribute x2 and then 8x and then 16. x2(x2) + x2(8x) + x2(16) + 8x(x2) + 8x(8x) + 8x(16) + 16(x2) + 16(8x) + 16(16) Multiply. x4 + 8x3 + 16x2 + 8x3 + 64x2 + 128x + 16x2 + 128x + 256 x4 + 16x3 + 96x2 + 256x + 256 Combine like terms.

Check It Out! Example 4b Find the product. (2x – 1)3 (2x – 1)(2x – 1)(2x – 1) Write in expanded form. (2x – 1)(4x2 – 4x + 1) Multiply the last two binomial factors. Distribute 2x and then –1. 2x(4x2) + 2x(–4x) + 2x(1) – 1(4x2) – 1(–4x) – 1(1) 8x3 – 8x2 + 2x – 4x2 + 4x – 1 Multiply. 8x3 – 12x2 + 6x – 1 Combine like terms.

Notice the coefficients of the variables in the final product of (a + b)3. these coefficients are the numbers from the third row of Pascal's triangle. Each row of Pascal’s triangle gives the coefficients of the corresponding binomial expansion. The pattern in the table can be extended to apply to the expansion of any binomial of the form (a + b)n, where n is a whole number.

This information is formalized by the Binomial Theorem, which you will study further in Chapter 11.

Example 5: Using Pascal’s Triangle to Expand Binomial Expressions Expand each expression. A. (k – 5)3 1 3 3 1 Identify the coefficients for n = 3, or row 3. [1(k)3(–5)0] + [3(k)2(–5)1] + [3(k)1(–5)2] + [1(k)0(–5)3] k3 – 15k2 + 75k – 125 B. (6m – 8)3 1 3 3 1 Identify the coefficients for n = 3, or row 3. [1(6m)3(–8)0] + [3(6m)2(–8)1] + [3(6m)1(–8)2] + [1(6m)0(–8)3] 216m3 – 864m2 + 1152m – 512

Identify the coefficients for n = 3, or row 3. Check It Out! Example 5 Expand each expression. a. (x + 2)3 1 3 3 1 Identify the coefficients for n = 3, or row 3. [1(x)3(2)0] + [3(x)2(2)1] + [3(x)1(2)2] + [1(x)0(2)3] x3 + 6x2 + 12x + 8 b. (x – 4)5 1 5 10 10 5 1 Identify the coefficients for n = 5, or row 5. [1(x)5(–4)0] + [5(x)4(–4)1] + [10(x)3(–4)2] + [10(x)2(–4)3] + [5(x)1(–4)4] + [1(x)0(–4)5] x5 – 20x4 + 160x3 – 640x2 + 1280x – 1024

Identify the coefficients for n = 4, or row 4. Check It Out! Example 5 Expand the expression. c. (3x + 1)4 1 4 6 4 1 Identify the coefficients for n = 4, or row 4. [1(3x)4(1)0] + [4(3x)3(1)1] + [6(3x)2(1)2] + [4(3x)1(1)3] + [1(3x)0(1)4] 81x4 + 108x3 + 54x2 + 12x + 1

3. The number of items is modeled by Lesson Quiz Find each product. 1. 5jk(k – 2j) 5jk2 – 10j2k 2. (2a3 – a + 3)(a2 + 3a – 5) 2a5 + 6a4 – 11a3 + 14a – 15 3. The number of items is modeled by 0.3x2 + 0.1x + 2, and the cost per item is modeled by g(x) = –0.1x2 – 0.3x + 5. Write a polynomial c(x) that can be used to model the total cost. –0.03x4 – 0.1x3 + 1.27x2 – 0.1x + 10 4. Find the product. (y – 5)4 y4 – 20y3 + 150y2 – 500y + 625 5. Expand the expression. (3a – b)3 27a3 – 27a2b + 9ab2 – b3