Pierre Favier Laboratoire de l’Accélérateur Linéaire

Slides:



Advertisements
Similar presentations
ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also.
Advertisements

A_RD_01 Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay French Labs. :
COMPUTER MODELING OF LASER SYSTEMS
Compton based Polarized Positrons Source for ILC V. Yakimenko, I. Pogorelsky BNL Collaboration meeting, Beijing, January 29-February1, 2006.
Status of g ray generation at KEK-ATF ► Introduction ► Status of the cavity R&D ► Out Look French Labs. : LAL (Orsay) in Collaboration with CELIA (Laser.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Medium and High Energy Photons for Nuclear Particle Physics Schin Daté Accelerator Division, SPring-8/JASRI Advanced Photons and Science Evolution 2010.
LAL, CELIA, KEK, LMA, INFN, Alsyom, Amplitude
Outline 1.ERL facility for gamma-ray production [A. Valloni] 2.ERL facility - Tracking Simulations [D. Pellegrini] 3.SC magnet quench tests [V. Chetvertkova]
Overview of enhancement cavity work at LAL/Orsay  INTRO:  Optical cavity developments at LAL  Results on optical cavity in picosecond regime  Polarised.
Polarization-preserving of laser beam in Fabry Perot Cavity Accelerator center, IHEP Li Xiaoping.
Experimental Effort for Alternative Schemes Experimental Effort for Alternative Schemes Hirotaka Shimizu Hiroshima University ILC2007 at DESY Hamburg.
Status of R&D of Optical Cvities at KEK-ATF ►Introduction ►Status of the cavity R&D ►Out Look KEK, Hiroshima University LAL (Orsay) in Collaboration withCELIA.
1 Junji Urakawa (KEK, Japan) at Sapphire day, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
1 Fabry-Perot cavity & pulsed laser J. Bonis, V. Brisson, J.N. Cayla, R. Chiche, R. Cizeron, J. Colin, Y. Fedala, G. Guilhem, M. Jacquet-Lemire, D. Jehanno,
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
Feedback R&D for Optical Cavity Ryuta TANAKA (Hiroshima univ.) 19 th Feb 2013 SAPPHiRE DAY.
LPOL-cavity Introduction Tests at Orsay Optics (laser polarisation) Calorimeter DAQ Mechanics & installation at DESY  Norbert’s talk.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Experimental investigation of dynamic Photothermal Effect
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
Channeling Studies at LNF
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
Jean-Yves Vinet CNRS-ARTEMIS Observatoire de la Côte d’Azur Effects In cavity mirrors.
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
Photon beam generation at PERLE
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
§3.3 Optical Resonators with Spherical Mirrors We will show the field solutions inside the spherical mirror resonator are Gaussian Beams Z=0 00 z R2R2.
Laser source for ThomX Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Interest for Compton scattering 2.Laser beam for ThomX.
0 Frequency Gain 1/R 1 R 2 R 3 0 Frequency Intensity Longitudinal modes of the cavity c/L G 0 ( ) Case of homogeneous broadening R2R2 R3R3 R1R1 G 0 ( )
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
Compton Gamma-ray Generation Experiment by Using an Optical Cavity in ATF POSIPOL 2007 Workshop at LAL Hirotaka Shimizu Hiroshima University.
Update of R&D Optical Cvities at KEK-ATF ►Introduction ►Status of the cavity R&D ►Recent activities ►Out Look KEK, Hiroshima University LAL (Orsay) in.
Technical Board Summary Preliminary Philip Bambade Laboratoire de l’Accélérateur Linéaire Université Paris 11, Orsay, France ATF2 project meeting, Technical.
Advanced Compton Sources (for Nuclear Photonics) Luca Serafini – INFN/Milan Physics and Technology of Compton/Thomson X/  rays Sources - weak Compton.
THE COMPACT X-RAY SOURCE THOMX The machine Applications Some technical issues (optics)
Compton based Polarized Positrons Source for ILC V. Yakimenko 1, D. Cline 2, Ya. Fukui 2, V. Litvinenko 1, I. Pogorelsky 1, S. Roychowdhury 3 1 BNL, 2.
Bunch Shape Monitor for HINS Wai-Ming Tam Project X Collaboration Meeting September 11, 2009.
SPARCLAB: PW-class Ti:Sa laser+SPARC
Jacques Haïssinski, LAL on behalf of the ThomX Collaboration
I. Chaikovska and F. Zomer (LAL, Orsay, France)
Luca Serafini – INFN-Milan and University of Milan
R&D description Schedule
Recent developments of optical cavity systems for advanced photon sources based on Compton backscattering A. Martens, F. Zomer, P. Favier, K. Cassou,
Goals Technical solution  Fabry-Perot optical resonator
Synopsis by Maria Ruiz-Gonzalez 12/8/16
Photon beam generation at PERLE
Emanuele (ESS), Alessandro (CERN), Mikel (Tekniker), Hayley (ISIS)
Interaction between Photons and Electrons
IRIDE: The Photon Machine
Conveners: L.Serafini,F. Villa
Compton effect and ThomX What possible future?
CEPC RF Power Sources System
Polarized Positrons at Jefferson Lab
ERL accelerator review. Parameters for a Compton source
Development of Optical Resonant Cavities for laser-Compton Scattering
R&D of Freedback-Free Optical Resonant Cavity
Val Kostroun and Bruce Dunham
Electron sources for FCC-ee
Explanation of the Basic Principles and Goals
WELCOME TO SOLEIL Amor Nadji On behalf of Synchrotron SOLEIL
Sensitivity curves beyond the Advanced detectors
DANE Compton ring for ultra high flux photons in the 100 KeV-10 MeV energy range D. Alesini (LNF, INFN Frascati)
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Presentation transcript:

Pierre Favier Laboratoire de l’Accélérateur Linéaire ThomX X-ray source Study of thermal effects in Fabry-Perot cavities in the pulsed regime Pierre Favier Laboratoire de l’Accélérateur Linéaire Fabian Zomer

e- + laser e- + X-ray Compton X-ray source for societal applications fcol = 16,7 MHz

Compton sources: Principle hn Laser X/g ray Compton Back Scattering (CBS) Electron e- + glaser q e- + X/g ray Scattered electron Energy distribution (a.u.) Eelectron=50MeV Ex/g in keV EX/g ray, max ~ 4ge2 hn hn  1,1 eV ~ 40 000 for 50 MeV electrons Powerful mechanism to boost photons

Compton sources: advantages & applications Angular dependence Wide energy range EX/g ray = f(q) Diaphragm X/g ray Laser q Electron Quasi mono-energetic beam ( D𝐸 𝐸 = 1-10%) EX/g ray, max ~ 4ge2 hn EX/g ray 10 keV – 100 keV 1 – 30 MeV > 30 MeV 30 - 80 MeV 0,26 – 1,4 GeV > 1,4 GeV Radiography, radiotherapy Nuclear waste management Polarized positron source Art history Nuclear physics gg collider Ee Increase the size of the accelerator Applications Pierre Favier, M2 NPAC

nx  sc 𝑁𝑒 𝑃𝑙𝑎𝑠𝑒𝑟 ℎ𝑣𝑙𝑎𝑠𝑒𝑟 𝑓𝑐𝑜𝑙 𝑣𝑙𝑎𝑠𝑒𝑟 4psxsy Practical use low Main level arm sc  0,5 barn nx  sc 𝑁𝑒 𝑃𝑙𝑎𝑠𝑒𝑟 ℎ𝑣𝑙𝑎𝑠𝑒𝑟 𝑓𝑐𝑜𝑙 𝑣𝑙𝑎𝑠𝑒𝑟 4psxsy nx  sc 𝑁𝑒 𝑃𝑙𝑎𝑠𝑒𝑟 ℎ𝑣𝑙𝑎𝑠𝑒𝑟 𝑓𝑐𝑜𝑙 𝑣𝑙𝑎𝑠𝑒𝑟 4psxsy X-ray flux: nx = 1013 ph/s Plaser = 600 kW Societal applications State-of-the-art laser + ampli: 500 W Store laser power in a Fabry-Perot cavity LAL best achievement : 100 kW Limited by thermal effects

FABRY-PEROT CAVITIES IN THE PULSED REGIME LASER OPTICS

Thermal effects R&D Requirements: 600 kW Fabry-Perot cavity Two plane mirrors Two spherical mirrors Round-trip frequency n0 = 33,3 MHz Cavity optical length: 9 m R&D Laser power: 50-100 W Expected gain: 10 000 Thermal effects Expected stored power: 300 kW – 1MW Requirements: 600 kW

Thermal effects on the mirrors Thermal lensing Thermal expansion Reflection Transmission Laser Temperature gradient in the coating Temperature gradient in the substrate ds ds Variation of the index of refraction Curvature variation 𝑛 𝑇 ≠0 Pierre Favier, M2 NPAC

Quantification of the thermal effects Winkler model W. Winkler et al. Physical Review A, 44(11) 1991 Thermal expansion coefficient Thermal expansion Absorption in the coating ~ 0,5-1 10-5 ds  𝛼 4𝜋 𝑎𝑐𝑃𝑠 Curvature change Stored power in the cavity Heat conductivity a,k, a only depend on the material a (10-7 K-1) k (W/m/K) ds (nm) Fused Silica 5,5 1,31 16,7 ULE 0,1 1,38 0,29 For Ps = 500 kW Cost… Ultra Low Expansion glass

Stored power decreases Coupling losses Spatial matching Input laser beam Stored power decreases Circulating laser beam Stored power = Coupling*Pmax Perfect Thermal effects Coupling = 1 𝑁 −∞ +∞ 𝐸𝑖𝑛 𝐸 ∗ 𝑐𝑖𝑟𝑐ⅆ𝑥ⅆ𝑦 2 Input laser beam nx = sc 𝑁𝑒( 𝑃𝑙𝑎𝑠𝑒𝑟 𝐸γ )( 𝑓𝑐𝑜𝑙 𝑓𝑟𝑒𝑝 ) 4 π σ𝑥σ𝑦 Circulating laser beam Elliptical modes Deterioration Pierre Favier, M2 NPAC

Conlusion and prospects ThomX Compton backscattering-based machine Societal applications High photons flux required Thermal effects must be mastered Analytic calculations Simulations Studies on prototypes ~ end 2015 ThomX installation (2016), electronics, commissioning (2017), first applications…

Thank you for your attention