Introduction to Algorithms

Slides:



Advertisements
Similar presentations
IKI 10100: Data Structures & Algorithms Ruli Manurung (acknowledgments to Denny & Ade Azurat) 1 Fasilkom UI Ruli Manurung (Fasilkom UI)IKI10100: Lecture10.
Advertisements

Chapter 5 Shortest Paths: Label-Correcting Algorithms
15.082J, 6.855J, and ESD.78J Sept 16, 2010 Lecture 3. Graph Search Breadth First Search Depth First Search Intro to program verification Topological Sort.
Management Science 461 Lecture 2b – Shortest Paths September 16, 2008.
Chapter 7 Maximum Flows: Polynomial Algorithms
15.082J, 6.855J, and ESD.78J September 21, 2010 Eulerian Walks Flow Decomposition and Transformations.
15.082J & 6.855J & ESD.78J September 23, 2010 Dijkstra’s Algorithm for the Shortest Path Problem.
Network Flows Chun-Ta, Yu Graduate Institute Information Management Dept. National Taiwan University.
Graphs. Graphs Similar to the graphs you’ve known since the 5 th grade: line graphs, bar graphs, etc., but more general. Those mathematical graphs are.
Network Simplex Animations Network Simplex Animations.
and 6.855J March 6, 2003 Maximum Flows 2. 2 Network Reliability u Communication Network u What is the maximum number of arc disjoint paths from.
15.082J & 6.855J & ESD.78J September 30, 2010 The Label Correcting Algorithm.
EMIS 8374 The Ford-Fulkerson Algorithm (aka the labeling algorithm) Updated 4 March 2008.
15.082J and 6.855J and ESD.78J Network Simplex Animations.
Network Simplex Animations
EMIS 8374 Dijkstra’s Algorithm Updated 18 February 2008
CS120 Graphs.
Dijkstra’s Algorithm with two levels of buckets
Refresh and Get Ready for More
The Shortest Augmenting Path Algorithm for the Maximum Flow Problem
Introduction to Maximum Flows
Introduction to Maximum Flows
15.082J & 6.855J & ESD.78J Visualizations
Dijkstra’s Algorithm for the Shortest Path Problem
15.082J & 6.855J & ESD.78J Visualizations
Lecture 6 Shortest Path Problem.
Dijkstra’s Algorithm for the Shortest Path Problem
Breadth first search animation
Lecture 4 Graph Search.
Lecture 19-Problem Solving 4 Incremental Method
Introduction to Minimum Cost Flows
EMIS 8374 Shortest Path Problems: Introduction Updated 9 February 2008
Spanning Tree Algorithms
and 6.855J Flow Decomposition
Primal-Dual Algorithm
Algorithms Lecture # 29 Dr. Sohail Aslam.
Successive Shortest Path Algorithm
Shortest Path Problems
and 6.855J March 6, 2003 Maximum Flows 2
15.082J & 6.855J & ESD.78J Radix Heap Animation
Network Optimization Depth First Search
Min Global Cut Animation
Dijkstra’s Algorithm for Shortest Paths
The Shortest Augmenting Path Algorithm for the Maximum Flow Problem
Reading before Lecture 13
The Shortest Augmenting Path Algorithm for the Maximum Flow Problem
EMIS 8374 Search Algorithms Updated 9 February 2004
The Ford-Fulkerson Algorithm
Network Optimization Topological Ordering
and 6.855J The Goldberg-Tarjan Preflow Push Algorithm for the Maximum Flow Problem Obtain a network, and use the same network to illustrate the.
and 6.855J Dijkstra’s Algorithm
Lecture 6 Shortest Path Problem.
Visualizations Dijkstra’s Algorithm
Introduction to Maximum Flows
Network Simplex Animations
and 6.855J The Goldberg-Tarjan Preflow Push Algorithm for the Maximum Flow Problem Obtain a network, and use the same network to illustrate the.
Eulerian Cycles in directed graphs
and 6.855J Topological Ordering
15.082J & 6.855J & ESD.78J Visualizations
The Minimum Cost Spanning Tree Problem
and 6.855J Depth First Search
Chapter 14 Graphs © 2011 Pearson Addison-Wesley. All rights reserved.
Breadth first search animation
OPIM 915 Fall 2010 Data Structures 23-38,
Introduction to Maximum Flows
EMIS 8374 Search Algorithms Updated 12 February 2008
Max Flows 3 Preflow-Push Algorithms
Class 11 Max Flows Obtain a network, and use the same network to illustrate the shortest path problem for communication networks, the max flow.
15.082J & 6.855J & ESD.78J Visualizations
EMIS 8374 Search Algorithms: DFS Updated 12 February 2004
Presentation transcript:

Introduction to Algorithms LECTURE 16 (Chap. 22) Elementary Graph Algorithm • 22.2 Breath-first search • 22.3 Depth-first search • 22.4 Topological sort Breadth first search animation

Breadth first search animation Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.) Breadth first search animation

Initialize 1 2 4 5 3 6 9 7 8 1 2 4 5 3 6 9 7 8 1 1 pred(1) = 0 next := 1 order(next) = 1 LIST:= {1} Unmark all nodes in N; Mark node s LIST 1 next 1

Select a node i in LIST 1 2 4 5 3 6 9 7 8 1 1 1 In breadth first search, i is the first node in LIST LIST 1 next 1

If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 3 6 LIST 1 2 2 1 next

If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 5 7 3 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 6 LIST 1 2 5 3 2 next

If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 5 7 3 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 3 6 4 LIST 1 2 5 3 4 2 3 next

If node i is not incident to an admissible arc… 2 4 2 2 8 1 1 1 1 1 5 5 7 3 9 Delete node i from LIST 3 3 6 4 LIST 1 2 5 3 2 4 3 next

Select Node i 2 4 2 2 2 8 1 1 1 1 1 5 5 7 3 9 The first node on LIST becomes node i 3 3 6 4 LIST 1 2 5 3 2 4 3 next

If node i is incident to an admissible arc… 5 2 4 4 2 2 2 8 1 1 1 5 5 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 4 LIST 1 2 5 3 4 5 2 4 3 next

If node i is not incident to an admissible arc… 5 2 4 4 2 2 2 2 8 1 1 1 5 5 7 3 Delete node i from LIST 9 3 3 6 4 LIST 1 2 5 3 4 5 2 3 4 next

Select a node 5 2 4 4 2 2 2 8 1 1 1 5 5 5 7 3 The first node on LIST becomes node i 9 3 3 6 4 LIST 1 2 5 3 4 5 2 3 4 next

If node i is incident to an admissible arc… 5 2 4 4 2 2 2 8 1 1 1 5 5 5 7 3 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 3 2 4 5 next

If node i is not incident to an admissible arc… 5 2 4 4 2 2 2 8 1 1 1 5 5 5 5 7 3 Delete node i from LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 3 2 4 5 next

Select node 3 5 2 4 4 2 2 2 8 1 1 1 5 5 5 5 7 3 node 3 is not incident to any admissible arcs delete node 3 from LIST 9 3 3 3 3 6 6 4 6 LIST 1 2 5 3 4 6 2 3 5 4 6 next

Select a node 5 2 4 4 4 2 2 8 1 1 1 5 5 7 3 i : = 4 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 2 3 4 5 next

If node i is incident to an admissible arc… 5 2 4 4 4 7 2 2 8 8 1 1 1 5 5 7 3 Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 8 3 7 2 4 6 5 next

If node i is not incident to an admissible arc… 5 2 4 4 4 4 7 2 2 8 8 1 1 1 5 5 7 3 Delete node i from LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 8 7 3 2 6 4 5 next

Select node i 5 2 4 4 7 2 2 8 8 1 1 1 5 5 7 3 i := 6 9 3 3 6 6 6 4 6 LIST 1 2 5 3 4 6 8 7 3 2 6 4 5 next

If node i is incident to an admissible arc… 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 6 6 4 6 LIST 1 2 5 3 4 6 8 7 2 8 3 5 6 4 7 next

If node i is incident to an admissible arc… 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 9 3 3 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 8 9 2 4 5 3 7 6 next

If node i is not incident to an admissible arc… 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Delete node i from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 9 8 7 5 6 2 3 4 next

Select node 8 5 2 4 4 7 2 2 8 8 8 8 1 8 1 1 5 5 7 7 3 node 8 is not incident to an admissible arc; delete it from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next

Select node 7 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 7 7 3 node 7 is not incident to an admissible arc; delete it from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next

Select node 9 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 node 9 is not incident to an admissible arc; delete it from LIST 9 9 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next

Breadth first search animation Depth First Search Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.) Breadth first search animation

Initialize 1 2 4 5 3 6 9 7 8 1 2 4 5 3 6 9 7 8 1 1 pred(1) = 0 next := 1 order(next) = 1 LIST:= {1} Unmark all nodes in N; Mark node s LIST 1 next 1

Select a node i in LIST 1 2 4 5 3 6 9 7 8 1 1 1 In depth first search, i is the last node in LIST LIST 1 next 1

If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 3 6 LIST 1 2 2 1 next

Select the last node on LIST 2 4 2 2 2 8 1 1 1 1 1 5 7 9 3 6 Node 2 gets selected LIST 1 2 2 1 next

If node i is incident to an admissible arc… 2 4 4 2 2 2 3 8 1 1 1 1 1 5 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 6 LIST 1 2 4 3 2 1 next

Select 2 4 4 4 2 2 2 2 3 8 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 2 3 1 next

If node i is incident to an admissible arc… 2 4 4 4 2 2 2 2 3 8 8 4 1 1 1 1 1 5 7 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 6 LIST 1 2 4 8 3 4 2 1 next

Select 2 4 4 4 2 2 2 2 3 8 8 8 4 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 3 2 1 4 next

If node i is not incident to an admissible arc… 2 4 4 4 2 2 2 2 3 8 8 8 8 4 1 1 1 1 1 5 7 Delete node i from LIST 9 3 6 LIST 1 2 4 8 1 3 2 4 next

Select 2 4 4 4 4 2 2 2 2 3 8 8 8 8 4 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 1 4 2 3 next

If node i is incident to an admissible arc… 2 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 7 Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) 9 3 6 LIST 1 2 4 5 8 1 5 2 4 3 next

Select 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 5 1 2 5 3 4 next

If node i is incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 6 6 6 LIST 1 2 4 8 5 6 6 3 4 2 5 1 next

Select the last node on LIST 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Select node 6 9 3 6 6 6 6 LIST 1 2 4 8 5 6 3 4 6 5 1 2 next

If node i is incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 9 3 6 6 6 7 6 LIST 1 2 4 5 8 6 9 1 7 2 4 5 3 6 next

Select the last node on LIST 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Select node 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 1 2 4 6 5 3 next

If node i is incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 8 4 3 1 6 2 5 7 next

Select the last node on LIST 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 Select node 7 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 4 8 1 6 2 3 5 7 next

If node i is not incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 Delete node 7 from LIST 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 1 2 8 4 6 3 7 5 next

Select node 9 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 Delete node 9 from LIST But node 9 is not incident to an admissible arc. 9 9 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 8 4 2 1 7 3 5 6 next

Select node 6 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 But node 6 is not incident to an admissible arc. Delete node 6 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 4 3 2 6 7 8 1 5 next

Select node 5 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 But node 5 is not incident to an admissible arc. Delete node 5 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 3 2 1 4 5 6 8 7 next

Select node 4 2 4 4 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 4 from LIST But node 4 is not incident to an admissible arc. 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 7 1 2 5 8 4 6 3 next

Select node 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 But node 2 is not incident to an admissible arc. Delete node 2 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 6 3 1 4 5 7 2 8 next

Select node 1 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 9 9 9 9 9 3 3 6 6 6 6 6 6 7 9 6 LIST 1 3 2 4 8 5 6 9 7 2 6 9 7 3 8 5 1 4 next

Select node 3 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 3 from LIST But node 3 is not incident to an admissible arc. 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 3 2 4 5 8 6 9 7 9 8 5 3 4 2 1 7 6 next

Select node 1 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 1 from LIST But node 1 is not incident to an admissible arc. 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 2 3 4 8 5 6 9 7 9 5 2 1 3 4 7 6 8 next

LIST is empty 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 The algorithm ends! 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 2 3 4 5 8 6 9 7 9 4 5 3 6 2 1 7 8 next

The depth first search tree 1 3 2 9 8 7 5 4 6 Note that each induced subtree has consecutively labeled nodes

Breadth first search animation Topological Ordering Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.) Breadth first search animation

Preliminary to Topological Sorting LEMMA. If each node has at least one arc going out, then the first inadmissible arc of a depth first search determines a directed cycle. COROLLARY 1. If G has no directed cycle, then there is a node in G with no arcs going. And there is at least one node in G with no arcs coming in. COROLLARY 2. If G has no directed cycle, then one can relabel the nodes so that for each arc (i,j), i < j. 1 4 6 7 3

Initialization 6 1 Determine the indegree of each node LIST is the set of nodes with indegree of 0. “Next” will be the label of nodes in the topological order. 5 2 8 3 7 4 next 1 2 3 4 5 6 7 8 Node Indegree LIST 7

Select a node from LIST 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 5 2 8 3 7 7 4 1 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 2 2 3 2 1 1 1 2 7 5

Select a node from LIST 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 8 3 7 7 4 1 1 2 next 1 2 3 4 5 6 7 8 Node LIST Indegree 2 2 1 3 2 1 1 1 2 4 5 7 6

Select a node from LIST 3 6 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 8 3 7 7 4 1 2 1 3 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 1 2 1 1 2 4 5 7 2 6

Select a node from LIST 3 6 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 1 4 3 2 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 2 1 1 1 2 4 7 5 6 2 1

Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 1 3 5 2 4 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 1 2 2 3 2 1 1 1 2 1 4 7 5 1 2 6

Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 4 1 6 6 3 5 4 2 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 2 1 1 2 1 1 2 1 2 1 4 6 7 5 8

Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 7 2 5 5 2 2 8 8 3 4 7 7 4 4 1 6 2 7 4 5 3 6 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 1 2 2 3 1 1 2 1 1 1 2 8 3

Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 7 8 2 5 5 2 2 8 8 3 3 4 7 7 4 4 1 6 2 5 8 6 7 3 1 4 next List is empty. The algorithm terminates with a topological order of the nodes 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 2 1 3 1 2 1 1 2 1 3