M. Povarnitsyn, K. Khishchenko, P. Levashov

Slides:



Advertisements
Similar presentations
A. Samarian, W. Tsang, J. Khachan, B. James Complex Plasma Laboratory School of Physics, University of Sydney, NSW 2006, Australia.
Advertisements

Electron transport in the shock ignition regime Tony Bell University of Oxford Rutherford Appleton Laboratory Acknowledgements: Guy Schurtz, Xavier Ribeyre.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
COMPUTER MODELING OF LASER SYSTEMS
Laser Magnetized Plasma Interactions for the Creation of Solid Density Warm (~200 eV) Matter M.S. R. Presura, Y. Sentoku, A. Kemp, C. Plechaty,
Atomic spectra are a result of energy level diagrams - quantum theory.
Short pulse modelling in PPD N. J. Sircombe, M. G. Ramsay, D. A. Chapman, S. J. Hughes, D. J. Swatton.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Assembly of Targets for RPA by Compression Waves A.P.L.Robinson Plasma Physics Group, Central Laser Facility, STFC Rutherford-Appleton Lab.
SECTION 3 CHANGES IN TEMPERATURE AND PHASE Chapter 10.
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
Transferring Thermal Energy Chapter 9 Section 3a.
Ultrafast Dynamics in Solid Plasmas Using Solid Plasmas Using Doppler Spectrometry and Giant magnetic Pulses Ultrafast Dynamics in Solid Plasmas Using.
Great feeling Walking Ifen without machines Sunday Jan 26, 2007.
COST Meeting Krakow May 2010 Temperature and K  -Yield radial distributions of laser-produced solid-density plasmas Ulf Zastrau X-ray Optics Group - IOQ.
1 Multiphase code development for simulation of PHELIX experiments M.E. Povarnitsyn, N.E. Andreev, O.F. Kostenko, K.V. Khischenko and P.R. Levashov Joint.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Determination of fundamental constants using laser cooled molecular ions.
1 P. Huai, Feb. 18, 2005 Electron PhononPhoton Light-Electron Interaction Semiclassical: Dipole Interaction + Maxwell Equation Quantum: Electron-Photon.
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
1 Outline 13.1 Use Of Optical Materials Light And Vision Interaction Of Light With Electrons In Solids Absorption of Light
M. Povarnitsyn*, K. Khishchenko, P. Levashov
Recent advances in wave kinetics
0 APS-Sherwood Texas 2006-April Study of nonlinear kinetic effects in Stimulated Raman Scattering using semi- Lagrangian Vlasov codes Alain Ghizzo.
1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Laser Energy Transport and Deposition Package for CRASH Fall 2011 Review Ben Torralva.
Simulation of femtosecond laser ablation of gold into water Povarnitsyn M.E. 1, Itina T.E. 2, Levashov P.R. 1, Khishchenko K.V. 1 1 JIHT RAS, Moscow, Russia.
LCLS Plasma and Warm Dense Matter Studies Richard W. Lee, Lawrence Livermore National Laboratory P. Audebert, Laboratoire pour l’Utilisation des Lasers.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
The propagation of a microwave in an atmospheric pressure plasma layer: 1 and 2 dimensional numerical solutions Conference on Computation Physics-2006.
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Integrated Target Reflectivity Analysis
Microwave Cooking Modeling Heat and moisture transport Andriy Rychahivskyy.
Electron-Phonon Relaxation Time in Cuprates: Reproducing the Observed Temperature Behavior YPM 2015 Rukmani Bai 11 th March, 2015.
Investigation 5 - Energy Transfer 8th Grade Chemical Interactions
Two –Temperature Model (Chap 7.1.3)
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
1 ON THE MODELING OF DOUBLE PULSE LASER ABLATION OF METALS M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures, RAS, Moscow,
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
Wide-range Multiphase Equations of State and Radiative Opacity of Substances at High Energy Densities Konstantin V. Khishchenko, Nikolay Yu. Orlov Joint.
Tunable excitons in gated graphene systems
Towards understanding the Quark-Gluon Plasma
Boltzmann Transport Equation for Particle Transport
New concept of light ion acceleration from low-density target
Thermal effects in laser-metals interaction using a
Studies of the energy transfer
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Gone in a Picosecond.
Control of laser wakefield amplitude in capillary tubes
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
Thermal Energy By: Lauren Robinson. HEAT Heat is the flow of thermal energy or energy in transit. It transfers from a warm object to a cold object. Transfer.
Heat Transfer and Molecular Motion
Determination of the thermal conductivity of a metal
Why Do CPO Lead to Slow Light When the Laser
Weather dynamics Day 2 – Heat Science 10.
Summary of Lecture 18 导波条件 图解法求波导模式 边界条件 波导中模式耦合的微扰理论
Heat Transfer and Molecular Motion
Heat Transfer and Molecular Motion
High Harmonic Analysis Using a COLTRIMS Technique
An ideal I-V curve Exponential gives Te Isat gives density.
Simulation of Time-Resolved Carrier Dynamics
Pump and probe technique
Thermal diffusivity measurement on Nb by
LUSI Status and Early Science
Presentation transcript:

M. Povarnitsyn, K. Khishchenko, P. Levashov A wide-range model for simulation of pump-probe experiments with metals M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia povar@ihed.ras.ru T. Itina Laboratoire Hubert Curien, CNRS, St-Etienne, France EMRS-2011 Laser materials processing for micro and nano applications Nice, France 12 May, 2011

Outline Motivation Model — Governing equations — Equation-of-state — Transport properties Pump-probe technique Simulation results Conclusions

Motivation Reflectivity R Phase shift ψ

Two-temperature hydrodynamic model

Two-temperature semi-empirical EOS bn unstable sp

Frequency of collisions Eidmann et al. PRE 62 (2000) Pump-probe for cold Elsayed et al. PRL 58, 1212 (1987) Groeneveld et al. PRL 64, 784 (1990) Schoenlein et al. PRL 58, 1680 (1987)

Electron-ion coupling model

Electron-ion coupling

Thermal conductivity model

Thermal conductivity of Al, Ti = Te

Permittivity model

Permittivity of Al, Ti = Troom E. D. Palik, Handbook of optical constants of solids, 1985.

Equations of EM field

Transfer-matrix method (optics) Born, M.; Wolf, E., Oxford, Pergamon Press, 1964.

Energy absorption

Widmann et al. PHYSICS OF PLASMAS 8 (2001) Pump-probe technique pump probe CCD delay target Widmann et al. PHYSICS OF PLASMAS 8 (2001)

Reflectivity of S- and P-polarized probes

Phase shift of S- and P-polarized probes

Conclusions Pump-probe experiments provide an integral test of the models in the theoretically difficult regime of warm dense matter The target material motion is evident for heating by femtosecond pulses of intensity > 1014 W/cm2. Phase shift of S and P-polarized pulses is different because of separated zones of absorption Uncertainty in the pulse energy determination of ~ 10% gives substantial deflection of the theoretical curves

Appendix

Appendix