On new bone formation in the pre-osteoarthritic joint

Slides:



Advertisements
Similar presentations
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Advertisements

Perlecan in late stages of osteoarthritis of the human knee joint
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Perlecan in late stages of osteoarthritis of the human knee joint
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
On how degeneration influences load-bearing in the cartilage–bone system: a microstructural and micromechanical study  A. Thambyah, Ph.D., N. Broom, Ph.D. 
Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis  D. Bobinac, M. Marinovic, E.
Increased risk for radiographic osteoarthritis features in young active athletes: a cross- sectional matched case–control study  F.W. Roemer, M. Jarraya,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
The groove model of osteoarthritis applied to the ovine fetlock joint
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
Acute joint pathology and synovial inflammation is associated with increased intra- articular fracture severity in the mouse knee  J.S. Lewis, W.C. Hembree,
Associations between pre-operative radiographic changes and outcomes after total knee joint replacement for osteoarthritis  M.M. Dowsey, M. Nikpour, P.
Angiogenesis in two animal models of osteoarthritis
Positron emission tomography with 18F-FDG in osteoarthritic knee
Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion 
Promotion of the intrinsic damage–repair response in articular cartilage by fibroblastic growth factor-2  F.M.D. Henson, Ph.D., E.A. Bowe, Ph.D., M.E.
Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama,
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and.
Potential role of the posterior cruciate ligament synovio-entheseal complex in joint effusion in early osteoarthritis: a magnetic resonance imaging and.
The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium  A. Eitner, J. Pester, S. Nietzsche, G.O.
Effect of puerarin on bone formation
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
3D histopathological grading of osteochondral tissue using contrast-enhanced micro- computed tomography  H.J. Nieminen, H.K. Gahunia, K.P.H. Pritzker,
Transection of vessels in epiphyseal cartilage canals leads to osteochondrosis and osteochondrosis dissecans in the femoro-patellar joint of foals; a.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle  M. Doube, B.Phil., B.V.Sc., Professor.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh,
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
The influence of early osteoarthritic collagen network de-structuring in articular cartilage on the tissue stiffness and swelling properties  M. Nickien,
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
M.Y. Chan, J.R. Center, J.A. Eisman, T.V. Nguyen 
J. A. Gallagher, N. Thomas, J. L. Donnelly, N. Jeffery, D. Mills, G. R
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy  C.-Y. Wen, C.-B. Wu, B. Tang, T. Wang, C.-H.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology  M. Geyer,
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
Lead accumulation in tidemark of articular cartilage
Evidence for bone mineral density and bone resorption in middle and elderly women with knee osteoarthritis in Shanghai: a cross sectional study  Q. Xiaofeng 
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
Effects of helium–neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage  Y.-S. Lin, M.Sc, Dr M.-H. Huang, M.D., Ph.D.,
Lymphatic vessels in osteoarthritic human knees
Presentation transcript:

On new bone formation in the pre-osteoarthritic joint A. Thambyah, Ph.D., N. Broom, Ph.D.  Osteoarthritis and Cartilage  Volume 17, Issue 4, Pages 456-463 (April 2009) DOI: 10.1016/j.joca.2008.09.005 Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Indian ink-stained articular surface of the full intact-to-lesion transition of a cartilage-on-bone sample viewed en face. The intact (I), transition (T) and lesion (L) regions are indicated. The actual size is ∼14mm by 45mm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Representative low magnification images of (a) intact, (b) transition and (c) lesion regions described in Fig. 1. Arrow in each image indicates the distal-most tidemark, i.e., boundary between the ZCC and AC. Scale bar=200μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Tidemark multiplicity in (a) the intact site, and in (b) the adjacent lesion site. Note the extent of advance of the bone cement line (white arrows) up into the ZCC. Black arrows indicate the distal-most tidemark. Scale bar=100μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Montage showing bony spicule in the intact region emanating from Haversian-like canals (HC). White arrow indicates distal-most tidemark. Scale bar=100μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Intact site showing development of spicules and their associated new bone matrix (NB). White arrows indicate distal-most tidemark. Scale bar=100μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 (a) New bone formation and network of new Haversian-like canals (see swarm of white arrows) in lesion site creating an extensive osseous infilling in the ZCC. Scale bar=200μm. The framed region is shown enlarged in (b). The distal-most tidemark (see white arrow in b) appears as a faint and thus new mineralization front. Note the clear boundary or cement line between the new bone and ZCC (black arrows in b). Scale bar=50μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Fine canaliculi radiating from osteocytes within a bony cuff viewed at high magnification. Arrow highlights the cement line between cuff and ZCC. Scale bar=10μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 Radially advancing spicule. White arrow indicates the cement line delineating the boundary between the new bone and ZCC. Note also a laterally growing spicule imaged in its cross-section at X. Scale bar=50μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 9 Images showing increased spicule density in traversing from (a) intact towards (b) lesion site. Scale bar=200μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 10 Intact region showing older lamellar bone (site A) with its associated Haversian-like canal. Site B shows new bone forming within the ZCC with a morphology suggestive of non-lamellar or less organised woven bone. Black arrow shows distal-most tidemark. Scale bar=50μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 11 Categorisation of changes in the ZCC and bone cement line across the intact-to-lesion span for the 30 samples analysed in study. A graded continuum of structural change defined in terms of five discrete stages 1–5 was employed. The bars locate each of the individual samples and their morphological status within the continuum. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 12 Images showing similarity between (a) an osteon crossing in long bone fracture healing reported much earlier by Rahn et al.36 and (b) spicules in the OA joint as reported in present study. Scale bar=50μm. Osteoarthritis and Cartilage 2009 17, 456-463DOI: (10.1016/j.joca.2008.09.005) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions