Figure 2 Facial appearance and brain imaging

Slides:



Advertisements
Similar presentations
Figure Pedigrees of the SCA42 families identified in this study
Advertisements

Figure 2 ERG amplitude reduction in the follow-up study
Figure 1 Phenotype and genotype of an undiagnosed family with autosomal recessive spastic ataxia Phenotype and genotype of an undiagnosed family with autosomal.
Figure 1 Summary of prior diagnostic workup in neuromuscular disorder cases Summary of prior diagnostic workup in neuromuscular disorder cases Percentage.
Figure Family pedigree and clinical improvement with riboflavin treatment Family pedigree and clinical improvement with riboflavin treatment (A) The proband.
Figure 3 Pedigree of familial idiopathic transverse myelitis
Figure 1 Regional changes in FA values
Figure 1 Brain MRI findings in the present case
Figure 2 Needle biopsy of the left vastus lateralis
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 2 Spinal cord lesions
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure 2 Disease progression slowed during each round of Treg infusions and correlated with increased Treg suppressive function Disease progression slowed.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure 3 Example of venous narrowing
Figure 1 Clinical features and muscle MRI in MYMK-related Carey-Fineman-Ziter syndrome Clinical features and muscle MRI in MYMK-related Carey-Fineman-Ziter.
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure Pedigree of the family
Figure 1 ERG peak time delay at baseline
Figure 1 Quantitative spinal cord MRI maps and segmentations
Figure 1 Clinical features and pedigree
Figure 1 Dominant and recessive missense and nonsense variants in neurofilament light (NEFL)‏ Dominant and recessive missense and nonsense variants in.
Figure 3 Temporal trends in FALS incidence
Table 4 Associations in SNP array data between the Braak stage and previously known AD risk loci (341 variants) comparing participants with Braak stage.
Figure 1 All patients with pediatric genetic movement disorders, their genetic diagnoses, and type of genetic investigations All patients with pediatric.
Figure 2 Specific brain MRI findings of 8 patients
Figure 5 Neurite structure is not disrupted by the lack of neurofilament light (NEFL)‏ Neurite structure is not disrupted by the lack of neurofilament.
Figure 2 Linkage analysis of chromosome 19
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Illustration of white matter– and lesion-associated regions of interest (ROIs)‏ Illustration of white matter– and lesion-associated regions of.
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 1 Family pedigree and MRI
Table 2 Rs number, gene, OR, 95% CI, and permutation p value for the statistical significant variants resulted from allelic association analysis association.
Figure 1 Family pedigree and DNA sequencing results
Figure 4 Voltage-clamp recordings of KCNJ18 carrying the patient's SNVs expressed in Xenopus laevis oocytes under control conditions and after application.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure 1 Histamine flare in patients and controls
Figure 1 MRI findings over time
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 2 Global tau-PET distribution in familial prion disease mirrors the distribution seen in Alzheimer disease Global tau-PET distribution in familial.
Figure 1 Brain MRI features in patients with deletions upstream of LMNB1 Brain MRI features in patients with deletions upstream of LMNB1 All images are.
Figure 1 Family pedigrees, clinical photographs, and multispecies alignment showing the effect of the 3 reported mutations Family pedigrees, clinical photographs,
Figure 2 Kaplan-Meier survival graphs for 10-year risks of overall and post-90-day recurrent ischemic stroke (IS) and death Kaplan-Meier survival graphs.
Figure 1 Stacked bar chart depicts the proportion of patients with diffusion-weighted imaging (DWI)+ and DWI− scans categorized by index event type TIA.
Figure 1 Annualized percentage brain volume change
Figure 2 BVL according to on-study disability worsening
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure 1 bvFTD PINBPA network
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 2 Pedigrees of families and segregation analysis of variants c
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 2 Brain MRI features of 3 representatives patients with MS who experienced WNS after FTY withdrawal Brain MRI features of 3 representatives patients.
Figure Pedigree, images, and mutation analysis of the neuroferritinopathy family Pedigree, images, and mutation analysis of the neuroferritinopathy family.
Figure 3 Changing appearance of the frontal cortex with age associated with increasing myelination Changing appearance of the frontal cortex with age associated.
Figure 3 Within-group comparisons (before–after)‏
Figure FDG-PET, lymph node biopsy, and brain MRI
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 1 Representative radiologic and pathologic images of patients with brain somatic mutations in SLC35A2 Representative radiologic and pathologic images.
Figure 1 Segmentation of the normal-appearing periependymal white matter Segmentation of the normal-appearing periependymal white matter The figure demonstrates.
Figure 2 Patient 1 MRI evolution over time
Figure 2 Nonhuman primate brain immunohistochemistry
Figure 1 MRI of both patients with IgG4-HP and spinal cord arteriography of the first patient MRI of both patients with IgG4-HP and spinal cord arteriography.
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 3 A receiver operating characteristic curve of days to IVMP as a predictor of failure to regain 0.2 logMAR (20/30) vision (AUC 0.84, p < 0.001)‏
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Presentation transcript:

Figure 2 Facial appearance and brain imaging Facial appearance and brain imaging (A) Patient IV-2, 25 years. (B) Patient IV-5, 16 years. (C) Patient IV-7, 23 years. (D) Control, 20 years. (A.a, B.a, and C.a) Photographs showing dysmorphism, with bulbous nose, broad nasal bridge, coarse features, and wide-open mouth. (A.b, B.b, and C.b) Axial T2-weighted sequence showing asymmetric ventriculomegaly (black stars) and mild hypointense aspect of the globus pallidus (arrows). Diffuse brain atrophy and loss of white matter without signal abnormality, particularly in occipito parietal areas, are also observed. (A.c, B.c, C.c, and D) Axial susceptibility weighted imaging sequence showing bilateral intense hyposignal of the globus pallidus, significantly predominant in their medial part (arrows, A.c, B.c, and C.c) compared with the control (D). Agathe Roubertie et al. Neurol Genet 2018;4:e217 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.