Volume 22, Issue 2, Pages (February 2015)

Slides:



Advertisements
Similar presentations
Volume 15, Issue 10, Pages (October 2008)
Advertisements

Volume 13, Issue 6, Pages (June 2006)
Volume 19, Issue 9, Pages (September 2012)
Volume 20, Issue 1, Pages (January 2013)
Travis S. Young, Pieter C. Dorrestein, Christopher T. Walsh 
Volume 16, Issue 10, Pages (October 2009)
Volume 21, Issue 6, Pages (June 2014)
Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide  Zhongli Xu, Kathrin Jakobi, Katrin.
Volume 15, Issue 7, Pages (July 2008)
Volume 20, Issue 10, Pages (October 2013)
Volume 15, Issue 2, Pages (February 2008)
Adding Specificity to Artificial Transcription Activators
Volume 17, Issue 4, Pages (April 2010)
Volume 20, Issue 8, Pages (August 2013)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 20, Issue 8, Pages (August 2013)
Volume 25, Issue 2, Pages e4 (February 2018)
Benjamin N. Mijts, Pyung Cheon Lee, Claudia Schmidt-Dannert 
Volume 19, Issue 2, Pages (February 2012)
Volume 14, Issue 5, Pages (May 2007)
Volume 10, Issue 5, Pages (May 2003)
A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps  Stephanie.
Volume 19, Issue 9, Pages (September 2012)
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 15, Issue 10, Pages (October 2008)
Volume 19, Issue 3, Pages (March 2012)
Yit-Heng Chooi, Ralph Cacho, Yi Tang  Chemistry & Biology 
A Metabolomic View of Staphylococcus aureus and Its Ser/Thr Kinase and Phosphatase Deletion Mutants: Involvement in Cell Wall Biosynthesis  Manuel Liebeke,
Yihan Wu, Mohammad R. Seyedsayamdost  Cell Chemical Biology 
Volume 14, Issue 2, Pages (February 2007)
Volume 12, Issue 12, Pages (December 2005)
Shiela E. Unkles, Vito Valiante, Derek J. Mattern, Axel A. Brakhage 
Yi-Ling Du, Doralyn S. Dalisay, Raymond J. Andersen, Katherine S. Ryan 
Insights into Bacterial 6-Methylsalicylic Acid Synthase and Its Engineering to Orsellinic Acid Synthase for Spirotetronate Generation  Wei Ding, Chun.
Volume 18, Issue 5, Pages (May 2011)
Volume 20, Issue 4, Pages (April 2013)
Volume 7, Issue 12, Pages (December 2000)
Volume 10, Issue 11, Pages (November 2003)
Volume 17, Issue 1, Pages (January 2010)
Volume 14, Issue 2, Pages (February 2007)
Volume 10, Issue 5, Pages (May 2003)
In Vivo Biocombinatorial Synthesis of Lipopeptides by COM Domain-Mediated Reprogramming of the Surfactin Biosynthetic Complex  Claudia Chiocchini, Uwe.
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 15, Issue 2, Pages (February 2008)
Volume 20, Issue 6, Pages (June 2013)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 11, Issue 10, Pages (October 2004)
Volume 9, Issue 2, Pages (February 2002)
Volume 11, Issue 1, Pages (January 2004)
Volume 22, Issue 6, Pages (June 2015)
Volume 17, Issue 4, Pages (April 2010)
Volume 15, Issue 11, Pages (November 2008)
Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic  Meinan Lv, Junfeng Zhao, Zixin Deng,
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Volume 18, Issue 12, Pages (December 2011)
Volume 12, Issue 2, Pages (February 2005)
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
A Family of Pyrazinone Natural Products from a Conserved Nonribosomal Peptide Synthetase in Staphylococcus aureus  Michael Zimmermann, Michael A. Fischbach 
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 13, Issue 7, Pages (July 2006)
Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis  Guoqing Niu, Lei Li, Junhong Wei, Huarong.
Volume 15, Issue 7, Pages (July 2008)
Volume 12, Issue 3, Pages (March 2005)
Biosynthetic Studies and Genetic Engineering of Pactamycin Analogs with Improved Selectivity toward Malarial Parasites  Wanli Lu, Niran Roongsawang, Taifo.
Volume 12, Issue 3, Pages (March 2005)
Volume 13, Issue 3, Pages (March 2006)
Volume 22, Issue 6, Pages (June 2015)
Strategies for Engineering Natural Product Biosynthesis in Fungi
Presentation transcript:

Volume 22, Issue 2, Pages 229-240 (February 2015) Freedom and Constraint in Engineered Noncolinear Polyketide Assembly Lines  Yuki Sugimoto, Keishi Ishida, Nelly Traitcheva, Benjamin Busch, Hans-Martin Dahse, Christian Hertweck  Chemistry & Biology  Volume 22, Issue 2, Pages 229-240 (February 2015) DOI: 10.1016/j.chembiol.2014.12.014 Copyright © 2015 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2015 22, 229-240DOI: (10. 1016/j. chembiol. 2014 Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 1 Structures of Nitrosubstituted Pyrone Metabolites from Streptomyces spp. The biosynthetic building blocks derived from p-nitrobenzoate, malonyl- and methylmalonyl-coenzyme A are highlighted with bold lines. The waved bracket indicates assembly of the substructure by a single module. Chemistry & Biology 2015 22, 229-240DOI: (10.1016/j.chembiol.2014.12.014) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 2 Iterative Modules in the nor and aur Assembly Lines (A) Model for neoaureothin assembly by the noncolinear nor PKS. (B) The first module can catalyze up to four elongations when taken out of the biosynthetic context. Chemistry & Biology 2015 22, 229-240DOI: (10.1016/j.chembiol.2014.12.014) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 3 Comparison of Three Homologous Biosynthetic Gene Clusters and Strategic Plan for Engineering the nor PKS Pathway (A) Organization of neoaureothin (nor), spectinabilin (spn) and aureothin (aur) biosynthesis gene clusters. (B) Reconstitution and activation of the nor gene cluster using three plasmids. Each arrow indicates the direction of transcription and relative sizes of the open reading frames. Deduced gene products: NorA-C, PKS; NorD, transcriptional regulator; NorE, acyl-coenzyme A ligase; NorF, N-oxygenase; NorG, p-aminobenzoic acid synthase; NorH, cytochrome P450 monooxygenase; NorI, methyltransferase; NorJ, unknown; NorR (putative AfsR-like regulator); NorZ (transporter major facilitator superfamily). (C) Traceless PKS gene cloning/engineering strategy to construct aur∗ and aur# PKSs. Chemistry & Biology 2015 22, 229-240DOI: (10.1016/j.chembiol.2014.12.014) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 4 HPLC Monitoring of Metabolic Profiles of Pathway Engineered Mutants, Heterologous Host Strain, and Authentic Neoaureothin and Chemical Structures of Novel Metabolites Produced by the Mutants (A) HPLC profiles (UV 254 nm) of culture extract from heterologous neoaureothin producer (S. lividans ZX1::pNT42/pNT87/pYU1) (a), heterologous homoaureothin producer (S. lividans ZX1::pNT42/pYU50/pYU1) (b), heterologous host strain (S. lividans ZX1) (c), and authentic neoaureothin reference (d). Peaks marked with asterisks are derived from the E/Z isomers of compounds 1 in (a) and (d) and 6 in (b). (B) Chemical structures of the novel metabolites from the pathway engineered mutants, homoneoaureothin (5) and homoaureothin (6). Selected HMBC and COSY correlations are indicated by arrows and bold lines, respectively. Chemistry & Biology 2015 22, 229-240DOI: (10.1016/j.chembiol.2014.12.014) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 5 Domain Organization of nor PKS, Engineered nor PKSs, aur∗, aur#, and har PKS, and their Deduced Intermediates Chemistry & Biology 2015 22, 229-240DOI: (10.1016/j.chembiol.2014.12.014) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 6 Survey on Antimicrobial and Antiproliferative Effects of Neoaureothin 1 and Aureothin 2 and Homologs, Homoneoaureothin 5 and Homoaureothin 6 (A) (a)Antifungal activity against Sporobolomyces salmonicolor, Candida albicans, and Penicillium notatum. (b) Antibacterial activity against Bacillus subtilis, Staphylococcus aureus (MRSA), and Mycobacterium vaccae. Am, amphotericin B; Cp, ciprofloxacin (inhibition zone in mm). (B) Cytostatic effect of neoaureothin 1, aureothin 2, homoneoaureothin 5, and homoaureothin 6 on (a) K-562 (myelogenous leukemia) cells and (b) HUVEC. Cells were seeded on the microplate well. After 72 hr incubation, the relative amount of treated cells was monitored versus the control (bold line). Chemistry & Biology 2015 22, 229-240DOI: (10.1016/j.chembiol.2014.12.014) Copyright © 2015 Elsevier Ltd Terms and Conditions