Index tuning Hash Index.

Slides:



Advertisements
Similar presentations
External Memory Hashing. Model of Computation Data stored on disk(s) Minimum transfer unit: a page = b bytes or B records (or block) N records -> N/B.
Advertisements

CS4432: Database Systems II Hash Indexing 1. Hash-Based Indexes Adaptation of main memory hash tables Support equality searches No range searches 2.
Hash-Based Indexes Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
Hash-based Indexes CS 186, Spring 2006 Lecture 7 R &G Chapter 11 HASH, x. There is no definition for this word -- nobody knows what hash is. Ambrose Bierce,
1 Hash-Based Indexes Module 4, Lecture 3. 2 Introduction As for any index, 3 alternatives for data entries k* : – Data record with key value k – –Choice.
Hash-Based Indexes The slides for this text are organized into chapters. This lecture covers Chapter 10. Chapter 1: Introduction to Database Systems Chapter.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
CPSC 404, Laks V.S. Lakshmanan1 Hash-Based Indexes Chapter 11 Ramakrishnan & Gehrke (Sections )
ICOM 6005 – Database Management Systems Design Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department Lecture 11 – Hash-based Indexing.
Chapter 11 (3 rd Edition) Hash-Based Indexes Xuemin COMP9315: Database Systems Implementation.
Copyright 2003Curt Hill Hash indexes Are they better or worse than a B+Tree?
Hash Indexes: Chap. 11 CS634 Lecture 6, Feb
Index tuning Hash Index. overview Introduction Hash-based indexes are best for equality selections. –Can efficiently support index nested joins –Cannot.
ICS 421 Spring 2010 Indexing (2) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 2/23/20101Lipyeow Lim.
Arch (A) Tented Arch (T) Whorl (W) Loop (U or R) The four main classes of fingerprints Loop (60%) Arch/Tented Arch (6%) Whorl (34%) Other (Less than 1%)
1 Hash-Based Indexes Yanlei Diao UMass Amherst Feb 22, 2006 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
B+-tree and Hashing.
B+-tree and Hash Indexes
1 Hash-Based Indexes Chapter Introduction  Hash-based indexes are best for equality selections. Cannot support range searches.  Static and dynamic.
CPSC-608 Database Systems Fall 2010 Instructor: Jianer Chen Office: HRBB 315C Phone: Notes #8.
FALL 2004CENG 3511 Hashing Reference: Chapters: 11,12.
1 Hash-Based Indexes Chapter Introduction : Hash-based Indexes  Best for equality selections.  Cannot support range searches.  Static and dynamic.
Chapter 10,11 Indexes 11. Hash-based Indexes
Hashing and Hash-Based Index. Selection Queries Yes! Hashing  static hashing  dynamic hashing B+-tree is perfect, but.... to answer a selection query.
1 Database Systems ( 資料庫系統 ) December 6/7, 2006 Lecture #9.
1 Database Systems ( 資料庫系統 ) November 8, 2004 Lecture #9 By Hao-hua Chu ( 朱浩華 )
Database Management 7. course. Reminder Disk and RAM RAID Levels Disk space management Buffering Heap files Page formats Record formats.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11 Modified by Donghui Zhang Jan 30, 2006.
Introduction to Database, Fall 2004/Melikyan1 Hash-Based Indexes Chapter 10.
1.1 CS220 Database Systems Indexing: Hashing Slides courtesy G. Kollios Boston University via UC Berkeley.
Static Hashing (using overflow for collision managment e.g., h(key) mod M h key Primary bucket pages 1 0 M-1 Overflow pages(as separate link list) Overflow.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Indexed Sequential Access Method.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 10.
CPSC 461 Final Review I Hessam Zakerzadeh Dina Said.
B-Trees, Part 2 Hash-Based Indexes R&G Chapter 10 Lecture 10.
1 Database Systems ( 資料庫系統 ) November 28, 2005 Lecture #9.
Hash-Based Indexes. Introduction uAs for any index, 3 alternatives for data entries k*: w Data record with key value k w w Choice orthogonal to the indexing.
Database Applications (15-415) DBMS Internals- Part IV Lecture 15, March 13, 2016 Mohammad Hammoud.
Database Management 7. course. Reminder Disk and RAM RAID Levels Disk space management Buffering Heap files Page formats Record formats.
Database Applications (15-415) DBMS Internals- Part V Lecture 14, Oct 18, 2016 Mohammad Hammoud.
COP Introduction to Database Structures
Dynamic Hashing (Chapter 12)
Are they better or worse than a B+Tree?
Hash-Based Indexes Chapter 11
External Memory Hashing
Database Applications (15-415) DBMS Internals- Part V Lecture 17, March 20, 2018 Mohammad Hammoud.
Hashing Chapter 11.
Introduction to Database Systems
Hashing Chapter 11.
External Memory Hashing
Tree- and Hash-Structured Indexes
CS222: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hash-Based Indexes R&G Chapter 10 Lecture 18
Hash-Based Indexes Chapter 10
B-Trees, Part 2 Hash-Based Indexes
External Memory Hashing
CS222P: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hashing.
Hash-Based Indexes Chapter 11
Index tuning Hash Index.
Database Systems (資料庫系統)
LINEAR HASHING E0 261 Jayant Haritsa Computer Science and Automation
Database Systems (資料庫系統)
Hash-Based Indexes Chapter 11
Disk Storage Devices Preferred secondary storage device for high storage capacity and low cost. Data stored as magnetized areas on magnetic disk surfaces.
Chapter 11 Instructor: Xin Zhang
Tree- and Hash-Structured Indexes
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #07 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Presentation transcript:

Index tuning Hash Index

Overview

Linear Hashing This is another dynamic hashing scheme, an alternative to Extendible Hashing. LH handles the problem of long overflow chains without using a directory, and handles duplicates. Idea: Use a family of hash functions h0, h1, h2, ... hi(key) = h(key) mod(2iN); N = initial # buckets h is some hash function (range is not 0 to N-1) If N = 2d0, for some d0, hi consists of applying h and looking at the last di bits, where di = d0 + i. hi+1 doubles the range of hi (similar to directory doubling)

Linear Hashing (Contd.) Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin. Splitting proceeds in `rounds’. Round ends when all NR initial (for round R) buckets are split. Buckets 0 to Next-1 have been split; Next to NR yet to be split. Current round number is Level. Search: To find bucket for data entry r, find hLevel(r): If hLevel(r) in range `Next to NR’ , r belongs here. Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR; must apply hLevel+1(r) to find out.

Overview of LH file In the middle of a round

Linear Hashing (Contd.) Insert: Find bucket by applying hLevel / hLevel+1: If bucket to insert into is full: Add overflow page and insert data entry. (Maybe) Split Next bucket and increment Next. Can choose any criterion to `trigger’ split: Whenever an overflow page is added Space utilization Always split the page that Next pointer points to After splitting, the Next Pointer is incremented Since buckets are split round-robin, long overflow chains don’t develop! Doubling of directory in Extendible Hashing is similar; switching of hash functions is implicit in how the # of bits examined is increased.

Example of Linear Hashing On split, hLevel+1 is used to re-distribute entries. After inserting record r with h(r)=43

Example (contd.) After Inserting record r with h(r)=37 Since, the appropriate bucket has space, we do nothing

Example (contd.) After Inserting record r with h(r)=29 No overflow is needed, since we can find space in split image

Example (contd.) After Inserting record r with h(r)=22,66,34 Now the next is pointing to the end of current level

Example (contd.) After Inserting record r with h(r)=50 Level is incremented, next is reset to 0

LH Described as a Variant of EH The two schemes are actually quite similar: Begin with an EH index where directory has N elements. Use overflow pages, split buckets round-robin. First split is at bucket 0. (Imagine directory being doubled at this point.) But elements <1,N+1>, <2,N+2>, ... are the same. So, need only create directory element N, which differs from 0, now. When bucket 1 splits, create directory element N+1, etc. So, directory can double gradually. Also, primary bucket pages are created in order. If they are allocated in sequence too (so that finding i’th is easy), we actually don’t need a directory! Voila, LH.

Summary Hash-based indexes: best for equality searches, cannot support range searches. Static Hashing can lead to long overflow chains. Extendible Hashing avoids overflow pages by splitting a full bucket when a new data entry is to be added to it. (Duplicates may require overflow pages.) Directory to keep track of buckets, doubles periodically. Can get large with skewed data; additional I/O if this does not fit in main memory.