Interplay between Ciliary Ultrastructure and IFT-Train Dynamics Revealed by Single- Molecule Super-resolution Imaging  Felix Oswald, Bram Prevo, Seyda.

Slides:



Advertisements
Similar presentations
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Advertisements

Volume 15, Issue 3, Pages (April 2016)
Volume 112, Issue 7, Pages (April 2017)
Three-Dimensional Structure of the Human DNA-PKcs/Ku70/Ku80 Complex Assembled on DNA and Its Implications for DNA DSB Repair  Laura Spagnolo, Angel Rivera-Calzada,
Volume 35, Issue 2, Pages (October 2015)
Volume 88, Issue 2, Pages (October 2015)
Mechanotransmission and Mechanosensing of Human alpha-Actinin 1
Volume 19, Issue 11, Pages (June 2017)
Molecular Basis of Fibrin Clot Elasticity
Sebastian Meyer, Raimund Dutzler  Structure 
Volume 5, Issue 6, Pages (December 2013)
Volume 14, Issue 11, Pages (March 2016)
Mismatch Receptive Fields in Mouse Visual Cortex
Volume 8, Issue 1, Pages (July 2014)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Praveen D. Chowdary, Daphne L. Che, Kai Zhang, Bianxiao Cui 
Volume 24, Issue 22, Pages (November 2014)
Saikat Mukhopadhyay, Yun Lu, Shai Shaham, Piali Sengupta 
Volume 26, Issue 8, Pages (April 2016)
Cryo-EM Study of the Pseudomonas Bacteriophage φKZ
Volume 95, Issue 9, Pages (November 2008)
Alessandro De Simone, François Nédélec, Pierre Gönczy  Cell Reports 
On the Origin of Kinesin Limping
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Volume 89, Issue 5, Pages (November 2005)
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Cortical Mechanisms of Smooth Eye Movements Revealed by Dynamic Covariations of Neural and Behavioral Responses  David Schoppik, Katherine I. Nagel, Stephen.
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Volume 15, Issue 5, Pages (May 2016)
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Volume 24, Issue 8, Pages (August 2016)
Volume 25, Issue 7, Pages e2 (November 2018)
Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution  Sander Verbrugge, Lukas C. Kapitein, Erwin.
Volume 60, Issue 4, Pages (November 2008)
Volume 111, Issue 7, Pages (October 2016)
Volume 13, Issue 10, Pages (December 2015)
Volume 23, Issue 9, Pages (September 2015)
Dissecting the Kinematics of the Kinesin Step
Alon Poleg-Polsky, Huayu Ding, Jeffrey S. Diamond  Cell Reports 
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
Volume 111, Issue 12, Pages (December 2016)
Volume 16, Issue 2, Pages (February 2008)
Giulia Varsano, Yuedi Wang, Min Wu  Cell Reports 
Michael W. Gramlich, Vitaly A. Klyachko  Cell Reports 
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Movement Repetition Facilitates Response Preparation
Volume 2, Issue 6, Pages (December 2012)
Volume 23, Issue 9, Pages (September 2015)
Rikiya Watanabe, Makoto Genda, Yasuyuki Kato-Yamada, Hiroyuki Noji 
Volume 138, Issue 6, Pages (September 2009)
Volume 113, Issue 12, Pages (December 2017)
Volume 108, Issue 10, Pages (May 2015)
Cytoskeletal Control of Antigen-Dependent T Cell Activation
Volume 99, Issue 7, Pages (October 2010)
Volume 24, Issue 10, Pages (September 2018)
Volume 15, Issue 18, Pages (September 2005)
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Damian Dawidowski, David S. Cafiso  Structure 
GABA-A Inhibition Shapes the Spatial and Temporal Response Properties of Purkinje Cells in the Macaque Cerebellum  Pablo M. Blazquez, Tatyana A. Yakusheva 
Volume 107, Issue 3, Pages (August 2014)
Volume 5, Issue 1, Pages (October 2013)
Multisensory Integration in the Mouse Striatum
Volume 1, Issue 2, Pages (February 2012)
Volume 23, Issue 13, Pages (June 2018)
Volume 114, Issue 6, Pages (March 2018)
Maxwell H. Turner, Fred Rieke  Neuron 
XLF Regulates Filament Architecture of the XRCC4·Ligase IV Complex
Volume 95, Issue 9, Pages (November 2008)
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Presentation transcript:

Interplay between Ciliary Ultrastructure and IFT-Train Dynamics Revealed by Single- Molecule Super-resolution Imaging  Felix Oswald, Bram Prevo, Seyda Acar, Erwin J.G. Peterman  Cell Reports  Volume 25, Issue 1, Pages 224-235 (October 2018) DOI: 10.1016/j.celrep.2018.09.019 Copyright © 2018 The Author(s) Terms and Conditions

Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 Single-Molecule Imaging of IFT-B (OSM-6::eGFP, a Subunit of IFT-Particle Subcomplex B) (A) Time-averaged image of EGFP-tagged IFT-B imaged in phasmid chemosensory cilia of C. elegans (black) overlaid with single-molecule trajectories (white and colored traces; asterisks indicate the start of colored trajectories). Scale bar, 1 μm. The blue rhombus indicates the location of the velocity switch in the blue trajectory (see C). (B–E) Left: time-position (colored) and time-velocity (gray) traces of representative trajectories, highlighted with the same color in (A). Right: sequence of raw images corresponding to time points highlighted with white-filled symbols on the left. Trajectory in DS showing turnaround at (B), retrograde trajectory in PS and TZ (C), anterograde trajectory in TZ and PS (D) and anterograde trajectory in TZ including pauses (E). Scale bar, 500 nm. See also Figure S1. Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 Resolving Ciliary Ultrastructure by Dynamic Single-Molecule Super-resolution Imaging (A) Representative example of dynamic single-molecule super-resolution imaging on IFT-B: single-molecule localizations (nLoc = 1,785) (yellow circles, bottom) obtained from single-molecule trajectories (nTrajectories = 46) (colored lines, top) are used to obtain a super-resolution image that shows the underlying ciliary structure. Scale bar, 2 μm. (B) Illustration of the ciliary structure on the basis of state-of-the-art EM data (Doroquez et al., 2014) (left, middle) compared with super-resolution images of IFT proteins (right). Left: side view; middle: cross sections. Red highlights the ciliary base, blue the TZ, violet the PS, and gray the DS. Right: super-resolution fluorescence images (side view) of kinesin-II (bottom; nLoc = 493) and OSM-3 (middle [nLoc = 521] and top [nLoc = 833]). Arrows indicate the typical cross-sectional widths in the ciliary subdomains. Scale bar, 0.5 μm. Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 Single-Molecule Motility Characterization of IFT Components (A–C) Velocity distributions for IFT-B (nCilia = 19, nTrajectories = 202, nDisplacements = 1,157) (A), OSM-3 (nCilia = 38, nTrajectories = 324, nDisplacements = 2,630) (B), and kinesin-II (nCilia = 24, nTrajectories = 120, nDisplacements = 492) (C) in the presence of kinesin-II function. (D and E) Velocity distributions for IFT-B (nCilia = 22, nTrajectories = 143, nDisplacements = 1,632) (D) and OSM-3 (nCilia = 22, nTrajectories = 178, nDisplacements = 881) (E) in the absence of kinesin-II function. (F) Illustrations of kinesin-II, OSM-3, and IFT-B, as well as IFT trains in the presence and absence of kinesin-II function. Velocity distributions in (B) and (C) were fit with single Gaussian functions and those in (A), (D), and (E) with the sum of two Gaussians. Dashed lines indicate the maxima of the Gaussian functions. Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 Single-Molecule Velocity Histograms Resolved in Ciliary Subdomains (A) Velocity distributions of IFT-B in the presence of kinesin-II function for, from bottom to top, base (nDisplacementsBase = 144), TZ (nDisplacementsTZ = 280), first half of the PS (PS I) (nDisplacementsPSI = 258) (PS I), second half of the PS (PS II) (nDisplacementsPSII = 189), and the DS (nDisplacementsDS = 286). (B) Velocity distributions for IFT-B in absence of kinesin-II function (nDisplacementsBase = 496, nDisplacementsTZ = 337, nDisplacementsPSI = 216, nDisplacementsPSII = 319, nDisplacementsDS = 264). (C) Illustration of the ciliary ultrastructure indicating the subdomains. (D) Table summarizing the results of Gaussian fits of the velocity histograms (mean ± SD). Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 5 IFT-B Pausing at the Ciliary Base and TZ (A) IFT-B pausing positions with respect to ciliary base (nTotal = 71). Inset (cyan): histogram of pause durations in the TZ (nTZ = 55). (B) As in (A) for IFT-B pauses in the absence of kinesin-II function (nTotal = 101, nTZ = 94). (C) Left: super-resolution image of IFT-B (magenta) overlaid with a representative anterograde single-molecule trajectory (scale bar, 500 nm). Pause localizations highlighted in cyan and anterograde movement in white. Right: time-position trace of the IFT-B molecule visualized on the left. Inset: time-velocity trace of the same trajectory. Pauses are indicated in cyan. Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 6 IFT-B Turnaround Dynamics (A) Cartoon of ciliary ultrastructure with single-molecule turnaround trajectories. (B) Right: position-time and velocity-time traces of single-molecule trajectories highlighted on the left. Top: anterograde-to-retrograde turnarounds; bottom: retrograde-to-anterograde turnarounds (additional example trajectories shown in Figure S1). Left: super-resolution images of IFT-B in magenta, overlaid with turnaround trajectories highlighted in white. Pauses during turnarounds are highlighted in cyan. Scale bar, 500 nm. (C) Position histogram of IFT-B turnarounds. Top: anterograde-to-retrograde turns (na-r = 65); bottom: retrograde-to-anterograde turns (nr-a = 22), both in the presence of kinesin-II function. (D) As in (C) for IFT-B in the absence of kinesin-II function (na-r = 30, nr-a = 13). See also Figure S2. Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions

Figure 7 Kinesin-II-Dependent Alteration of Ciliary Ultra-structure and IFT-Train Orientation (A) Super-resolution images of base, TZ, and PS of IFT-B (left) (nLocIFTB = 2,917) and TBB-4 (right) (nLocTBB-4 = 1,423) in the presence of kinesin-II function. (B) As in (A), in the absence of kinesin-II function (nLocIFTB = 1,342, nLocTBB-4 = 1,288). Scale bar, 500 nm. (C) Cartoon of data analysis using perpendicular pairwise distances of trajectories. Pairwise distances were measured between the means of perpendicular positions of trajectories in the PS (Experimental Procedures). (D) CPD of pairwise distances of anterograde IFT-B (cyan) (nID = 739, 15 cilia), retrograde IFT-B (magenta) (nID = 417, 15 cilia), and TBB-4 (black) (nID = 1,559, 12 cilia) in the presence of kinesin-II function. Note that in the analysis of the TBB-4 data, only static TBB-4::EGFP was included, in order to select for tubulin incorporated in the axonemal structure, rather than tubulin transported by IFT (Hao et al., 2011). CPDs in dark cyan, dark magenta, and gray correspond to anterograde IFT-B (nID = 244, 11 cilia), retrograde IFT-B (nID = 183, 11 cilia), and TBB-4 (nID = 643, 8 cilia) respectively, in the absence of kinesin-II function. (E) Simulated CPDs obtained from fits to experimental CPDs; color coding as in (D). In the simulations, we reconstituted the nine-fold axonemal geometry and determined pairwise distances between IFT trains randomly placed on MT tracks in the axoneme, mimicking experimental conditions. In this way, by varying the axoneme width in the simulated PS, we generated a CPD library, used to fit the experimental CPDs. See also Figures S3–S5. Cell Reports 2018 25, 224-235DOI: (10.1016/j.celrep.2018.09.019) Copyright © 2018 The Author(s) Terms and Conditions