Towards a Fully Digital State-of-the-art Analog SiPM Andrada Muntean1, Esteban Venialgo1, Salvatore Gnecchi2, Carl Jackson2, Edoardo Charbon3 1Delft University of Technology, Delft, The Netherlands, 2SensL, Cork, Ireland 3EPFL, Lausanne, Switzerland
Outline Goal and Objectives Architecture Results Conclusions
Silicon Photomultipliers Analog SiPM Digital SiPM
Why SiPM? Compact Low bias voltage Insensitive to magnetic fields Noise characteristics improved through manufacturing processes Low cost Low power consumption Good timing resolution
SiPMs (2) Analog SiPM with FAST output Ĩ = ĩ1 +ĩ2 +ĩ3 +ĩ4 + … + ĩn v1 + C FAST OUTPUT STANDARD OUTPUT
Fast Output SensL Source: SensL
TDC Goal of this work Analog SiPM with digital output FAST OUTPUT TDC DIGITAL OUTPUT STANDARD OUTPUT Analog SiPM with digital output Backward-compatible
Objectives Reduction of internal parasitics Digital output Versatility / simplicity Compactness
Architecture FAST STANDARD OUTPUT Ring Oscillator MSB START Vref LSB STOP
Multi-Path ring oscillator Source: A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping (Matthew Z. Straayer, Michael H. Perrott)
TDC – doubling RO frequency Counter Tri-state delay cells Small area No calibration
Tri-state three inputs inverter Quicker transition for each input Faster oscillation period Minimum dimensions Symmetric inverter
TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1
TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1
TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1
Advantages & Drawbacks Simplicity Fast oscillation period with only 9 delay stages Good LSB Smaller area compared to other TDC architectures Complex layout (symmetric delay lines)
TDC layout TDC area: 73.67µm x 363.35µm -> 26767µm2 COUNTER VCO SERIALIZER TDC area: 73.67µm x 363.35µm -> 26767µm2
Results – TDC performance (no anti-phase) TT LSB =64.49ps FS LSB = 67.95ps SF LSB = 69.39ps FF LSB = 45.71ps SS LSB = 91.79ps Performance Value LSB 64.49 ps (TT) DNL +/- 0.55 LSB (TT) INL +/- 1.0 LSB (TT) Worst-case DNL +1.28/-1 LSB Worst-case INL +2.12/-1.66 LSB
Results – PVT sensitivity LSB vs. Temperature LSB vs. Vdd RING
System performance summary Value SiPM PDE @ 420nm 51 % FF 75 % DCR 50 kcps/mm2 TDC LSB (std/anti-phase) 64.5/35 ps DNL/INL (TT) +/-0.55 +/-1.0 LSB Resolution 10 bits Supply 3.3 V Input Single-ended Readout clock 40 MHz Power (peak / standby) <9mW / <1mW System Area 3 x 3.3 mm2 Backward-compatible yes 3 mm
Conclusions Expected improvement of parasitics in a fully integrated solution Backward-compatibility guaranteed Simplicity and compactness
Current and future work Develop new TDC architectures Low complexity, robust, scalable, versatile Increase timestamping granularity (more/faster TDCs) 3D ICs will enable the combination of SiPM optimized technologies with advanced CMOS low-power processes
Acknowledgements The Swiss National Science Foundation SensL for funding, in part, this research and for providing technology support