Towards a Fully Digital State-of-the-art Analog SiPM

Slides:



Advertisements
Similar presentations
GSI Event-driven TDC with 4 Channels GET4
Advertisements

January 28th, 2010Clermont Ferrand, Paul Scherrer Institut DRS Chip Developments Stefan Ritt.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Current-Mode Multi-Channel Integrating ADC Electrical Engineering and Computer Science Advisor: Dr. Benjamin J. Blalock Neena Nambiar 16 st April 2009.
Ultra Low Power PLL Implementations Sudhanshu Khanna ECE
A 16-Bit Kogge Stone PS-CMOS adder with Signal Completion Seng-Oon Toh, Daniel Huang, Jan Rabaey May 9, 2005 EE241 Final Project.
1 Delay Insensitivity does not mean slope insensitivity! Vainbaum Yuri.
1 MICROELETTRONICA Logical Effort and delay Lection 4.
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
ALL-DIGITAL PLL (ADPLL)
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Slide: 1International Conference on Electronics, Circuits, and Systems 2010 Department of Electrical and Computer Engineering University of New Mexico.
Mehdi Sadi, Italo Armenti Design of a Near Threshold Low Power DLL for Multiphase Clock Generation and Frequency Multiplication.
An Ultra Low Power DLL Design
Characterization of 1.2GHz Phase Locked Loops and Voltage Controlled Oscillators in a Total Dose Radiation Environment Martin Vandepas, Kerem Ok, Anantha.
Design of a 10 Bit TSMC 0.25μm CMOS Digital to Analog Converter Proceedings of the Sixth International Symposium on Quality Electronic Design IEEE, 2005.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
MICAS Department of Electrical Engineering (ESAT) Design-In for EMC on digital circuit December 5th, 2005 Low Emission Digital Circuit Design Junfeng Zhou.
A multichannel Time-To-Digital Converter ASIC with better than 3ps RMS Time Resolution Lukas Perktold (GRAZ/CERN), Jorgen Christiansen (CERN)
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
Low Power, High-Throughput AD Converters
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Low Power, High-Throughput AD Converters
Seok-jae, Lee VLSI Signal Processing Lab. Korea University
Technology VLSI Silicon Sensor and System Lab Digitally-Controlled Cell-based Oscillator With Multi-Phase Differential Outputs 楊佳榮
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Low Power, High-Throughput AD Converters
1 D. BRETON 1, L.LETERRIER 2, V.TOCUT 1, Ph. VALLERAND 2 (1) LAL ORSAY - France (2) LPC CAEN - France Super Nemo Absolute Time Stamper A high resolution.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Electronic Devices and Circuit Theory
Hugo Furtado CERN - Microelectronics Group 11th Workshop on Electronics for LHC and future Experiments Delay25, an ASIC for timing adjustment in LHC Delay25.
A 16:1 serializer for data transmission at 5 Gbps
Revue des mesures de temps ASIC/FPGA du pôle MicRhAu
E.Bechetoille, M.Dahoumane , I.Laktineh, H.Mathez
A 12-bit low-power ADC for SKIROC
THE CMOS INVERTER.
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
LHC1 & COOP September 1995 Report
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
implementation of a 42 ps tdc based on fpga target
Integrated Circuits for the INO
High speed pipelined ADC + Multiplexer for CALICE
High speed 12 bits Pipelined ADC proposal for the Ecal
R&D activity dedicated to the VFE of the Si-W Ecal
Chapter 13 Linear-Digital ICs
Full Custom Associative Memory Core
Pedro Henrique Köhler Marra Pinto and Frank Sill Torres
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
Activity on the TO ASIC project
The MDT TDC ASIC Development
Next generation 3D digital SiPM for precise timing resolution
EUDET – LPC- Clermont VFE Electronics
Phase shifter design for Macro Pixel ASIC
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
Status of n-XYTER read-out chain at GSI
PRESS RELEASE DATA SHEETS
Reduced Voltage Test Can be Faster!
Lecture 6: Logical Effort
MCP Electronics Time resolution, costs
Lecture 6: Logical Effort
Introduction to CMOS VLSI Design Lecture 5: Logical Effort
Turning photons into bits in the cold
Stefan Ritt Paul Scherrer Institute, Switzerland
Lecture 6: Logical Effort
TOF read-out for high resolution timing
Orsay Talks Christophe : General questions and future developments.
Front-end Digitization for fast Imagers.
Phase Frequency Detector &
Presentation transcript:

Towards a Fully Digital State-of-the-art Analog SiPM Andrada Muntean1, Esteban Venialgo1, Salvatore Gnecchi2, Carl Jackson2, Edoardo Charbon3 1Delft University of Technology, Delft, The Netherlands, 2SensL, Cork, Ireland 3EPFL, Lausanne, Switzerland

Outline Goal and Objectives Architecture Results Conclusions

Silicon Photomultipliers Analog SiPM Digital SiPM

Why SiPM? Compact Low bias voltage Insensitive to magnetic fields Noise characteristics improved through manufacturing processes Low cost Low power consumption Good timing resolution

SiPMs (2) Analog SiPM with FAST output Ĩ = ĩ1 +ĩ2 +ĩ3 +ĩ4 + … + ĩn v1 + C FAST OUTPUT STANDARD OUTPUT

Fast Output SensL Source: SensL

TDC Goal of this work Analog SiPM with digital output FAST OUTPUT TDC DIGITAL OUTPUT STANDARD OUTPUT Analog SiPM with digital output Backward-compatible

Objectives Reduction of internal parasitics Digital output Versatility / simplicity Compactness

Architecture FAST STANDARD OUTPUT Ring Oscillator MSB START Vref LSB STOP

Multi-Path ring oscillator Source: A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping (Matthew Z. Straayer, Michael H. Perrott)

TDC – doubling RO frequency Counter Tri-state delay cells Small area No calibration

Tri-state three inputs inverter Quicker transition for each input Faster oscillation period Minimum dimensions Symmetric inverter

TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1

TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1

TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7 Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1

Advantages & Drawbacks Simplicity Fast oscillation period with only 9 delay stages Good LSB Smaller area compared to other TDC architectures Complex layout (symmetric delay lines)

TDC layout TDC area: 73.67µm x 363.35µm -> 26767µm2 COUNTER VCO SERIALIZER TDC area: 73.67µm x 363.35µm -> 26767µm2

Results – TDC performance (no anti-phase) TT LSB =64.49ps FS LSB = 67.95ps SF LSB = 69.39ps FF LSB = 45.71ps SS LSB = 91.79ps Performance Value LSB 64.49 ps (TT) DNL +/- 0.55 LSB (TT) INL +/- 1.0 LSB (TT) Worst-case DNL +1.28/-1 LSB Worst-case INL +2.12/-1.66 LSB

Results – PVT sensitivity LSB vs. Temperature LSB vs. Vdd RING

System performance summary Value SiPM PDE @ 420nm 51 % FF 75 % DCR 50 kcps/mm2 TDC LSB (std/anti-phase) 64.5/35 ps DNL/INL (TT) +/-0.55 +/-1.0 LSB Resolution 10 bits Supply 3.3 V Input Single-ended Readout clock 40 MHz Power (peak / standby) <9mW / <1mW System Area 3 x 3.3 mm2 Backward-compatible yes 3 mm

Conclusions Expected improvement of parasitics in a fully integrated solution Backward-compatibility guaranteed Simplicity and compactness

Current and future work Develop new TDC architectures Low complexity, robust, scalable, versatile Increase timestamping granularity (more/faster TDCs) 3D ICs will enable the combination of SiPM optimized technologies with advanced CMOS low-power processes

Acknowledgements The Swiss National Science Foundation SensL for funding, in part, this research and for providing technology support