Tree Diagrams and Mutually Exclusive Events

Slides:



Advertisements
Similar presentations
CHAPTER 40 Probability.
Advertisements

IB-MYP Mathematics Year 10 ‘How can I create an unfair casino game?’ Probability Inquiry Project.
Symbiotic Relationships
Tree Diagrams  Be able to use a tree diagram to list the possible outcomes from two events.  Be able to calculate probabilities from tree diagrams. 
Lesson 10.8 AIM: Drawing Tree Diagrams and solving Permutations.
UNIT 5: PROBABILITY Basic Probability. Sample Space Set of all possible outcomes for a chance experiment. Example: Rolling a Die.
EXAMPLE 1 Find the probability of A or B
Probabilities of Disjoint and Overlapping Events notes.
CZECH GAME SUGAR, COFFEE, LEMONADE, TEA, RUM, BUM
Possible outcomes of mutually exclusive events – draw a possibility space diagram to help you answer each of the questions. 1. If both spinners are spun,
Unit 5: Probability Basic Probability.
Literacy Research Memory Skill Practice Stretch!
Literacy Research Memory Skill Practice Stretch!
Tips Need to Consider When Organizing a College Event
Factors, multiple, primes: Factors from prime factors
Factors, multiple, primes: Types of numbers from prime factors
Pythagoras: Identify the hypotenuse
Mutually exclusive events Relative frequency Tree Diagrams
Have Fridays homework out
True False True False True False Starter – True or False
Fractions: Multiplying or dividing an integer by a fraction
Rounding and estimating: How many significant figures?
Fractions: Ready to be added?
סדר דין פלילי – חקיקה ומהות ההליך הפלילי
ماجستير إدارة المعارض من بريطانيا
Factors, multiple, primes: Prime factors
Prime Factorization Practice

Decimals: Multiplying decimals

Differentiation: Basic differentiation
Revision 2.
Representing data: Scatter diagrams – correlation strength
3.3 The Addition Rule Important Concepts Mutually Exclusive Events
Linear simultaneous equations: Correct solution? (step 7)

Decimals: Multiply or divide by 0.5?
Fractions: Ordering Fractions
Area: Area of a triangle
Section 3.3: The Addition Rule
Circles: Radius or Diameter?
What number is missing from the pattern below?
Area: Area of a rectangle
Area: Area of a parallelogram
Ratio: Equivalent ratio
Mathematics (9-1) - iGCSE
Decimals: Ordering decimals – version 2
You must show all steps of your working out.
Fractions: Equivalent Fractions
Question 1.
Rearranging formula: Is
Fractions: Fractions of fractions
Indices: When can you use the multiplication law?
Straight line graphs: Horizontal and vertical lines
Rounding and estimating: Spot the significant figure
Power and indices: Reciprocals
Unit 10 Review Around the World.
Probability: Could it be a probability?
Factors, multiple, primes: Multiples
Fractions: Simplifies to a unit fraction?
Straight line graphs: Horizontal and vertical lines
Standard Form: Multiplying powers of 10
9J Conditional Probability, 9K Independent Events
Bearings: Can this be a bearing?
New Year Resolutions 3rd ESO.
Standard form: In standard form?
Simplifying Expressions: What are like terms?
Coordinates: Naming 2D coordinates – quadrant 1
Negative Numbers: Dividing – Pattern spotting
Tree Diagrams Be able to use a tree diagram to list the possible outcomes from two events. Be able to calculate probabilities from tree diagrams. Understand.
Presentation transcript:

Tree Diagrams and Mutually Exclusive Events True/false Reflect Your Turn WIN LOSE 0.5 ? 1 10 WIN 5 10 LOSE ? 3 10 Rule DRAW

Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N WIN LOSE 7 10 3 10 5) WIN LOSE 2 8 2 4 9) WIN LOSE 0.5 1) Y / N Y / N Y / N WIN LOSE 1 2 2 2 6) WIN LOSE 0.25 10) WIN LOSE 0.3 2) Y / N Y / N Y / N WIN LOSE 1 2 7) 0.3 -0.7 11) WIN LOSE WIN LOSE 0.3 0.7 3) Y / N Y / N Y / N WIN LOSE 1 0.5 8) 1 12) WIN LOSE Y / N WIN LOSE 0.5 1 4) Y / N Y / N Graeme.Mitchinson@excelsiornewcastle.org.uk

Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N WIN LOSE 7 10 3 10 5) WIN LOSE 2 8 2 4 9) WIN LOSE 0.5 1) Y / N Y / N Y / N WIN LOSE 1 2 2 2 6) WIN LOSE 0.25 10) WIN LOSE 0.3 2) Y / N Y / N Y / N WIN LOSE 1 2 7) 0.3 -0.7 11) WIN LOSE WIN LOSE 0.3 0.7 3) Y / N Y / N Y / N WIN LOSE 1 0.5 8) 1 12) WIN LOSE Y / N WIN LOSE 0.5 1 4) Y / N Y / N Graeme.Mitchinson@excelsiornewcastle.org.uk

TEA COKE JUICE COFFEE 0.20 0.10 0.50 15) WIN LOSE DRAW 13) 2 8 5 8 1 8 Y / N Y / N TEA COKE JUICE COFFEE 1 4 16) WIN LOSE DRAW 14) 0.25 0.50 0.75 Y / N Y / N Graeme.Mitchinson@excelsiornewcastle.org.uk

TEA COKE JUICE COFFEE 0.20 0.10 0.50 15) WIN LOSE DRAW 13) 2 8 5 8 1 8 Y / N Y / N TEA COKE JUICE COFFEE 1 4 16) WIN LOSE DRAW 14) 0.25 0.50 0.75 Y / N Y / N Graeme.Mitchinson@excelsiornewcastle.org.uk

Your Turn Y / N Y / N Y / N Y / N 0.4 1) 3) 0.5 0.1 2) 4) WIN 1 10 WIN LOSE DRAW 1) 0.4 0.5 0.1 WIN LOSE DRAW 3) 1 10 5 10 4 10 Y / N Y / N TEA COKE JUICE COFFEE 1 3 4) Y / N WIN LOSE DRAW 2) 1 2 Y / N Graeme.Mitchinson@excelsiornewcastle.org.uk

Your Turn - Answers Y / N Y / N Y / N Y / N 0.4 1) 3) 0.5 0.1 2) 4) WIN LOSE DRAW 1) 0.4 0.5 0.1 WIN LOSE DRAW 3) 1 10 5 10 4 10 Y / N Y / N TEA COKE JUICE COFFEE 1 3 4) Y / N WIN LOSE DRAW 2) 1 2 Y / N Graeme.Mitchinson@excelsiornewcastle.org.uk