Blosum matrices What are they

Slides:



Advertisements
Similar presentations
Substitution matrices
Advertisements

1 Introduction to Sequence Analysis Utah State University – Spring 2012 STAT 5570: Statistical Bioinformatics Notes 6.1.
BLAST, PSI-BLAST and position- specific scoring matrices Prof. William Stafford Noble Department of Genome Sciences Department of Computer Science and.
OUTLINE Scoring Matrices Probability of matching runs Quality of a database match.
Sequence alignment & Substitution matrices By Thomas Nordahl & Morten Nielsen.
Protein Fold recognition Morten Nielsen, CBS, BioCentrum, DTU.
Lecture outline Database searches
Optimatization of a New Score Function for the Detection of Remote Homologs Kann et al.
Heuristic alignment algorithms and cost matrices
Profile-profile alignment using hidden Markov models Wing Wong.
Scoring Matrices June 19, 2008 Learning objectives- Understand how scoring matrices are constructed. Workshop-Use different BLOSUM matrices in the Dotter.
Alignment methods and database searching April 14, 2005 Quiz#1 today Learning objectives- Finish Dotter Program analysis. Understand how to use the program.
Introduction to bioinformatics
Sequence alignment & Substitution matrices By Thomas Nordahl & Morten Nielsen.
. Computational Genomics Lecture #3a (revised 24/3/09) This class has been edited from Nir Friedman’s lecture which is available at
Scoring matrices Identity PAM BLOSUM.
BLOSUM Information Resources Algorithms in Computational Biology Spring 2006 Created by Itai Sharon.
Sequence Alignments Revisited
Alignment IV BLOSUM Matrices. 2 BLOSUM matrices Blocks Substitution Matrix. Scores for each position are obtained frequencies of substitutions in blocks.
Alignment III PAM Matrices. 2 PAM250 scoring matrix.
Blast heuristics Morten Nielsen Department of Systems Biology, DTU.
Introduction to Bioinformatics From Pairwise to Multiple Alignment.
Sequence comparison: Score matrices Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas
Alignment Statistics and Substitution Matrices BMI/CS 576 Colin Dewey Fall 2010.
Multiple Sequence Alignment
Substitution Numbers and Scoring Matrices
CISC667, S07, Lec5, Liao CISC 667 Intro to Bioinformatics (Spring 2007) Pairwise sequence alignment Needleman-Wunsch (global alignment)
Hidden Markov Models for Sequence Analysis 4
Evolution and Scoring Rules Example Score = 5 x (# matches) + (-4) x (# mismatches) + + (-7) x (total length of all gaps) Example Score = 5 x (# matches)
Scoring Matrices Scoring matrices, PSSMs, and HMMs BIO520 BioinformaticsJim Lund Reading: Ch 6.1.
Sequence analysis: Macromolecular motif recognition Sylvia Nagl.
Amino Acid Scoring Matrices Jason Davis. Overview Protein synthesis/evolution Protein synthesis/evolution Computational sequence alignment Computational.
Pairwise Sequence Alignment. The most important class of bioinformatics tools – pairwise alignment of DNA and protein seqs. alignment 1alignment 2 Seq.
Sequence alignment SEQ1: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK VADALTNAVAHVDDPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA SLDKFLASVSTVLTSKYR.
Comp. Genomics Recitation 3 The statistics of database searching.
Construction of Substitution Matrices
Sequence Alignment Csc 487/687 Computing for bioinformatics.
The Blosum scoring matrices Morten Nielsen BioSys, DTU.
Pairwise Sequence Analysis-III
Intro to Alignment Algorithms: Global and Local Intro to Alignment Algorithms: Global and Local Algorithmic Functions of Computational Biology Professor.
©CMBI 2005 Database Searching BLAST Database Searching Sequence Alignment Scoring Matrices Significance of an alignment BLAST, algorithm BLAST, parameters.
Sequence Alignment.
Construction of Substitution matrices
Blosum matrices What are they? Morten Nielsen BioSys, DTU
Step 3: Tools Database Searching
The statistics of pairwise alignment BMI/CS 576 Colin Dewey Fall 2015.
Psi-Blast Morten Nielsen, Department of systems biology, DTU.
©CMBI 2005 Database Searching BLAST Database Searching Sequence Alignment Scoring Matrices Significance of an alignment BLAST, algorithm BLAST, parameters.
Protein Sequence Alignment Multiple Sequence Alignment
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
Techniques for Protein Sequence Alignment and Database Searching G P S Raghava Scientist & Head Bioinformatics Centre, Institute of Microbial Technology,
Tutorial 4 Comparing Protein Sequences Intro to Bioinformatics 1.
Evolutionary Interpretation of Log Odds Scores for alignment Alexei Drummond Department of Computer Science.
Substitution Matrices and Alignment Statistics BMI/CS 776 Mark Craven February 2002.
Blast heuristics, Psi-Blast, and Sequence profiles Morten Nielsen Department of systems biology, DTU.
9/6/07BCB 444/544 F07 ISU Dobbs - Lab 3 - BLAST1 BCB 444/544 Lab 3 BLAST Scoring Matrices & Alignment Statistics Sept6.
Outline Basic Local Alignment Search Tool
Pairwise Sequence Alignment and Database Searching
Sequence similarity, BLAST alignments & multiple sequence alignments
Multiple sequence alignment (msa)
Pairwise alignment incorporating dipeptide covariation
LSM3241: Bioinformatics and Biocomputing Lecture 4: Sequence analysis methods revisited Prof. Chen Yu Zong Tel:
Intro to Alignment Algorithms: Global and Local
Large-Scale Genomic Surveys
Outline Basic Local Alignment Search Tool
Sequence alignment & Substitution matrices By Thomas Nordahl
Sequence Alignment Algorithms Morten Nielsen BioSys, DTU
Alignment IV BLOSUM Matrices
1-month Practical Course
Presentation transcript:

Blosum matrices What are they Blosum matrices What are they? Morten Nielsen Depart of systems biology, DTU IIB-INTECH, UNSAM, Argentina

Alignment scoring matrices Outline Alignment scoring matrices How are Blosum matrices constructed? What is a BLOSUM50 matrix and how is it different from a BLOSUM80 matrix? What is the difference between a Blosum scoring matrix and the Blosum frequency substitution matrix?

Sequence Alignment 1PLC._ 1PLB._

Where is the active site? Sequence alignment. Infer function (and functional residues) from one protein to another 1K7C.A TVYLAGDSTMAKNGGGSGTNGWGEYLASYLSATVVNDAVAGRSARSYTREGRFENIADVVTAGDYVIVEFGHNDGGSLSTDN S G N 1WAB._ EVVFIGDSLVQLMHQCE---IWRELFS---PLHALNFGIGGDSTQHVLW--RLENGELEHIRPKIVVVWVGTNNHG------ 1K7C.A GRTDCSGTGAEVCYSVYDGVNETILTFPAYLENAAKLFTAK--GAKVILSSQTPNNPWETGTFVNSPTRFVEYAEL-AAEVA 1WAB._ ---------------------HTAEQVTGGIKAIVQLVNERQPQARVVVLGLLPRGQ-HPNPLREKNRRVNELVRAALAGHP 1K7C.A GVEYVDHWSYVDSIYETLGNATVNSYFPIDHTHTSPAGAEVVAEAFLKAVVCTGTSL H 1WAB._ RAHFLDADPG---FVHSDG--TISHHDMYDYLHLSRLGYTPVCRALHSLLLRL---L

Homology modeling and the human genome

BLOSUM = BLOck SUbstitution Matrices Focus on conserved domains, MSA's (multiple sequence alignment) are ungapped blocks. Compute pairwise amino acid alignment counts Count amino acid replacement frequencies directly from columns in blocks Sample bias: Cluster sequences that are x% similar. Do not count amino acid pairs within a cluster. Do count amino acid pairs across clusters, treating clusters as an "average sequence". Normalize by the number of sequences in the cluster. BLOSUMXX matrices Sequences that are xx% similar are clustered during the construction of the matrix.

Log-odds scores Log-odds scores are given by Log( Observation/Expected) The log-odd score of matching amino acid j with amino acid i in an alignment is where Pij is the frequency of observing amino i aligned with j, and Qi, Qj are the frequencies of amino acids i and j in the data set. The log-odd score is (in half bit units)

So what does this mean? An example NAA = 14 NAD = 5 NAV = 5 NDA = 5 NDD = 8 NDV = 2 NVA = 5 NVD = 2 NVV = 2 PAA = 14/48 PAD = 5/48 PAV = 5/48 PDA = 5/48 PDD = 8/48 PDV = 2/48 PVA = 5/48 PVD = 2/48 PVV = 2/48 1: VVAD 2: AAAD 3: DVAD 4: DAAA MSA QA = 8/16 QD = 5/16 QV = 3/16

So what does this mean? PAA = 0.29 QAQA = 0.25 PAD = 0.10 QAQD = 0.16 PAV = 0.10 PDA = 0.10 PDD = 0.17 PDV = 0.04 PVA = 0.10 PVD = 0.04 PVV = 0.04 QAQA = 0.25 QAQD = 0.16 QAQV = 0.09 QDQA = 0.16 QDQD = 0.10 QDQV = 0.06 QVQA = 0.09 QVQD = 0.06 QVQV = 0.03 1: VVAD 2: AAAD 3: DVAD 4: DAAA MSA QA=0.50 QD=0.31 QV=0.19

So what does this mean? PAA = 0.29 PAD = 0.10 PAV = 0.10 PDA = 0.10 PDD = 0.17 PDV = 0.04 PVA = 0.10 PVD = 0.04 PVV = 0.04 QAQA = 0.25 QAQD = 0.16 QAQV = 0.09 QDQA = 0.16 QDQD = 0.10 QDQV = 0.06 QVQA = 0.09 QVQD = 0.06 QVQV = 0.03 SAA = 0.44 SAD =-1.17 SAV = 0.30 SDA =-1.17 SDD = 1.54 SDV =-0.98 SVA = 0.30 SVD =-0.98 SVV = 0.49 BLOSUM is a log-likelihood matrix: Sij = 2log2(Pij/(QiQj))

The Scoring matrix A D V 0.44 -1.17 0.30 1.54 -0.98 0.49 1: VVAD 2: AAAD 3: DVAD 4: DAAA MSA

And what does the BLOSUMXX mean? Cluster sequence Blocks at XX% identity Do statistics only across clusters Normalize statistics according to cluster size AV AP AL VL } min XX % identify A) B) AV GL GV

And what does the BLOSUMXX mean? AV AP AL VL A) B) AV GL GV

And what does the BLOSUMXX mean? High Blosum values mean high similarity between clusters Conserved substitution dominate Low Blosum values mean low similarity between clusters Less conserved substitutions dominate

BLOSUM80 <Sii> = 9.4 <Sij> = -2.9 A R N D C Q E G H I L K M F P S T W Y V A 7 -3 -3 -3 -1 -2 -2 0 -3 -3 -3 -1 -2 -4 -1 2 0 -5 -4 -1 R -3 9 -1 -3 -6 1 -1 -4 0 -5 -4 3 -3 -5 -3 -2 -2 -5 -4 -4 N -3 -1 9 2 -5 0 -1 -1 1 -6 -6 0 -4 -6 -4 1 0 -7 -4 -5 D -3 -3 2 10 -7 -1 2 -3 -2 -7 -7 -2 -6 -6 -3 -1 -2 -8 -6 -6 C -1 -6 -5 -7 13 -5 -7 -6 -7 -2 -3 -6 -3 -4 -6 -2 -2 -5 -5 -2 Q -2 1 0 -1 -5 9 3 -4 1 -5 -4 2 -1 -5 -3 -1 -1 -4 -3 -4 E -2 -1 -1 2 -7 3 8 -4 0 -6 -6 1 -4 -6 -2 -1 -2 -6 -5 -4 G 0 -4 -1 -3 -6 -4 -4 9 -4 -7 -7 -3 -5 -6 -5 -1 -3 -6 -6 -6 H -3 0 1 -2 -7 1 0 -4 12 -6 -5 -1 -4 -2 -4 -2 -3 -4 3 -5 I -3 -5 -6 -7 -2 -5 -6 -7 -6 7 2 -5 2 -1 -5 -4 -2 -5 -3 4 L -3 -4 -6 -7 -3 -4 -6 -7 -5 2 6 -4 3 0 -5 -4 -3 -4 -2 1 K -1 3 0 -2 -6 2 1 -3 -1 -5 -4 8 -3 -5 -2 -1 -1 -6 -4 -4 M -2 -3 -4 -6 -3 -1 -4 -5 -4 2 3 -3 9 0 -4 -3 -1 -3 -3 1 F -4 -5 -6 -6 -4 -5 -6 -6 -2 -1 0 -5 0 10 -6 -4 -4 0 4 -2 P -1 -3 -4 -3 -6 -3 -2 -5 -4 -5 -5 -2 -4 -6 12 -2 -3 -7 -6 -4 S 2 -2 1 -1 -2 -1 -1 -1 -2 -4 -4 -1 -3 -4 -2 7 2 -6 -3 -3 T 0 -2 0 -2 -2 -1 -2 -3 -3 -2 -3 -1 -1 -4 -3 2 8 -5 -3 0 W -5 -5 -7 -8 -5 -4 -6 -6 -4 -5 -4 -6 -3 0 -7 -6 -5 16 3 -5 Y -4 -4 -4 -6 -5 -3 -5 -6 3 -3 -2 -4 -3 4 -6 -3 -3 3 11 -3 V -1 -4 -5 -6 -2 -4 -4 -6 -5 4 1 -4 1 -2 -4 -3 0 -5 -3 7 <Sii> = 9.4 <Sij> = -2.9

BLOSUM30 <Sii> = 8.3 <Sij> = -1.16 A R N D C Q E G H I L K M F P S T W Y V A 4 -1 0 0 -3 1 0 0 -2 0 -1 0 1 -2 -1 1 1 -5 -4 1 R -1 8 -2 -1 -2 3 -1 -2 -1 -3 -2 1 0 -1 -1 -1 -3 0 0 -1 N 0 -2 8 1 -1 -1 -1 0 -1 0 -2 0 0 -1 -3 0 1 -7 -4 -2 D 0 -1 1 9 -3 -1 1 -1 -2 -4 -1 0 -3 -5 -1 0 -1 -4 -1 -2 C -3 -2 -1 -3 17 -2 1 -4 -5 -2 0 -3 -2 -3 -3 -2 -2 -2 -6 -2 Q 1 3 -1 -1 -2 8 2 -2 0 -2 -2 0 -1 -3 0 -1 0 -1 -1 -3 E 0 -1 -1 1 1 2 6 -2 0 -3 -1 2 -1 -4 1 0 -2 -1 -2 -3 G 0 -2 0 -1 -4 -2 -2 8 -3 -1 -2 -1 -2 -3 -1 0 -2 1 -3 -3 H -2 -1 -1 -2 -5 0 0 -3 14 -2 -1 -2 2 -3 1 -1 -2 -5 0 -3 I 0 -3 0 -4 -2 -2 -3 -1 -2 6 2 -2 1 0 -3 -1 0 -3 -1 4 L -1 -2 -2 -1 0 -2 -1 -2 -1 2 4 -2 2 2 -3 -2 0 -2 3 1 K 0 1 0 0 -3 0 2 -1 -2 -2 -2 4 2 -1 1 0 -1 -2 -1 -2 M 1 0 0 -3 -2 -1 -1 -2 2 1 2 2 6 -2 -4 -2 0 -3 -1 0 F -2 -1 -1 -5 -3 -3 -4 -3 -3 0 2 -1 -2 10 -4 -1 -2 1 3 1 P -1 -1 -3 -1 -3 0 1 -1 1 -3 -3 1 -4 -4 11 -1 0 -3 -2 -4 S 1 -1 0 0 -2 -1 0 0 -1 -1 -2 0 -2 -1 -1 4 2 -3 -2 -1 T 1 -3 1 -1 -2 0 -2 -2 -2 0 0 -1 0 -2 0 2 5 -5 -1 1 W -5 0 -7 -4 -2 -1 -1 1 -5 -3 -2 -2 -3 1 -3 -3 -5 20 5 -3 Y -4 0 -4 -1 -6 -1 -2 -3 0 -1 3 -1 -1 3 -2 -2 -1 5 9 1 V 1 -1 -2 -2 -2 -3 -3 -3 -3 4 1 -2 0 1 -4 -1 1 -3 1 5 <Sii> = 8.3 <Sij> = -1.16

The different Blosum matrices The BLOSUM alignment scoring matrix is a log-likelihood matrix The Blosum frequency substitution matrix, is a conditional probability matrix of matching amino acids j given you have amino acid i and

The way from frequencies to log-odds A R N D C Q E G H I L K M F P S T W Y V A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 The weight matrix is identical to the Blosum row for each amino adis