Multi-digit Multiplication

Slides:



Advertisements
Similar presentations
Multiplication Using the Lattice Method. What’s It All About? You are going to learn: How to multiply two whole numbers. What skills should you have already?
Advertisements

Multiplication Using the Lattice Method including multiplication of decimals by estimation.
Multiplication Using the Lattice Method including multiplication of decimals.
Understanding Value of Places
2-5 Example 2 Find the product of 87 and 39. Use the traditional multiplication method. 1. Estimate. 90 × 40 = 3,600 Lesson 4-13 Example 2.
Rounding Numbers CLASS 5.
Everyday Mathematics Lattice Multiplication Lattice Multiplication Everyday Mathematics Lattice multiplication involves: Using basic facts knowledge;
Partial Sums An Addition Algorithm.
Partial Sums An Addition Algorithm Add the hundreds ( ) Add the tens (60 +80) 140 Add the ones (8 + 3) Add the place value sums.
$100 $200 $300 $400 $100 $200 $300 $400 $300 $200 $100 Place value circle model Place value up to tens Place value hundred - thousands Place value –
Place Value and Multiplication
Methods for Multiplying. Standard Algorithm Partial Products Draw table with dimensions of digits in each number. Ex.
Lattice multiplication (327 x 28)
Place Value.
STEP 1 Multiply the digits in the ones place. Write the product in the ones place of the answer box. If the product is greater than ten, carry the number.
? 1 ten = 10 ones 1 ten How many ten?
Lattice Multiplication A NEW way to Multiply
$100 $200 $300 $400 $100 $200 $300 $400 $300 $200 $100 Multiply by 1 digit numbers Multiply & estimate results Multiply by 2 digit numbers Multiply.
Adding Two and Three Digit Numbers
How does the placement of a digit determine its value in a number? For example: What is the value of 4 in 34,766?
Lattice Multiplication. Step 1 1)Draw a set of 2 by 2 boxes. 46 x 79 2) Cut the boxes in half diagonally. 3) Place the numbers on the outside of the boxes.
LO: to round to the nearest 10 Which ten is the following number nearest to?
Everyday Math Algorithms
PLACE VALUE CHART  .
Chinese Multiplication Also known as: The Gelosia method The Gelosia method The Lattice Method The Lattice Method.
Rounding To the nearest 10,100,1000. Round to the nearest 10 T 27 UH 27 tens units 27 1) Draw a line to the right of the tens 2) Is the number on the.
Math symbols Rounding 2 digit numbers to the nearest tens Rounding 3 digit numbers to the nearest tens Rounding 3 digit numbers to the nearest hundreds.
36 LO: to round to the nearest 10
4,135,652 Place Value Hundred Thousands Ten Thousands Hundreds
Multiplication.
Objective - To round whole numbers.
X 10 thousands hundreds tens ones Place Value 18.
? 1 ten 1 ten = 10 ones How many ten?
Solve more difficult number problems mentally
Round to the nearest 100.
L l l l l l l l l l l 783.
Place Value.
Comparing Numbers.
Is it worth 5 or 50?.
Objective - To compare numbers.
Place Value © Ashley Lee, 2013.
Relationship of Numbers in the Place Value System
Is it worth 5 or 50?.
For example: What is the value of 4 in 34,766?.
Chinese Multiplication
4,135,652 Place Value Hundred Thousands Ten Thousands Hundreds
Lattice Multiplication
Adding Greater Numbers
Place Value.
Thousands Hundreds Tens Ones l l l l l l l l l
Objective - To read, write and identify the values of whole numbers.
Initiating Multiplication
Thousands Hundreds Tens Ones l l l l l l l l l
MULTI-DIGIT MULTIPLICATION.
Divisibility 4,8 and 11.
Lattice Multiplication
Mental Strategies.
Hundred Dollar Questions
Comparing Numbers.
Using Addition Properties
Lattice Multiplication
Three Card Targets Greater than 300 Less than 700
Presentation transcript:

Multi-digit Multiplication Demystified With Sticks and Carrots Lettuce Lattice

52  3

 tens units 5 2 52  3 3 place sticks and arrow cards according to the given numbers 5 0 2 3

52  3  5 2 3 15 6 5 0 2 3 1 0 0 5 0 6 15 6 tens units tens units 5 0 2 15 6 3 1 0 0 5 0 6 Note the types and number of intersections and make the number with arrow cards

 5 tens 2 units 3 15 6 52  3 5 0 2 3 1 0 0 5 0 6  5 tens 2 units 3 color the small lattice according to the big one 15 6

 5 tens 2 units 3 52  3 15 6 5 0 2 3 1 0 0 5 0 6  5 tens 2 units 3 draw the diagonals in small lattice 1 5 6

5 0 2  7 tens 9 units 8 3 1 0 0 5 0 6 1 5 6 1 hundred 5 tens 1 0 0 5 0 6 6 units = sum it up 6 50 100 + 156

79  8

 tens units 7 9 79  8 8 place sticks and arrow cards according to the given numbers 7 0 9 8

 7 tens 9 units 8 79  8 56 72 tens units units tens 7 0 9 56 72 8 5 0 0 6 0 7 0 2 Note the types and number of intersections and make the number with arrow cards

 7 tens 9 units 8 56 72 79  8 7 0 9 8 5 0 0 6 0 7 0 2  7 tens 9 units 8 color the small lattice according to the big one 56 72

 7 tens 9 units 8 79  8 56 72 7 0 9 8 5 0 0 6 0 7 0 2  7 tens 9 units 8 draw the diagonals in small lattice 5 6 7 2

7 0 9  7 tens 9 units 8 8 5 0 0 6 0 7 0 2 5 6 7 2 1 0 0 5 hundreds 13 tens 2 units 5 0 0 6 0 sum it up 2 7 0 130 500 + 1 0 0 6 0 0 3 0 6 0 0 3 0 2 632 =

4  26

 units tens 4 4  26 2 6 sticks and arrow cards 4 2 0 6

 4 units 2 tens 6 8 4  26 8 tens tens intersections 24 units units 4 24 2 0 8 0 6 2 0 4

 4 units 2 tens 8 6 24 4  26 4 2 0 8 0  4 units 2 tens 6 6 2 0 4 color the small lattice 8 24

 4 units 2 tens 6 4  26 8 4 24 2 0 8 0  4 units 2 tens 6 6 2 0 4 diagonals 8 2 4

4  4 units 2 tens 6 2 0 8 8 0 2 4 6 2 0 4 8 0 10 tens 4 units sum it up 2 0 4 100 + 1 0 0 1 0 0 4 104 =

84  67

 tens units hundreds 8 4 84  67 6 7 sticks and arrow cards 8 0 4 6 0 7

 8 tens 4 units 6 hundreds 7 hundreds 24 48 84  67 48 24 hundreds tens 56 28 tens intersections units tens units 8 0 4 56 28 6 0 4 0 0 0 8 0 0 2 0 0 4 0 7 5 0 0 6 0 2 0 8

 8 tens 4 units 6 48 hundreds 24 7 56 28  8 tens 4 units 6 hundreds 7 84  67 48 24 56 28 color the small lattice 8 0 4 6 0 4 0 0 0 8 0 0 2 0 0 4 0 7 5 0 0 6 0 2 0 8

 8 tens 4 units 6 hundreds 7  8 tens 4 units 6 7 84  67 48 24 4 8 2 4 56 28 diagonals 5 6 2 8 8 0 4 6 0 4 0 0 0 8 0 0 2 0 0 4 0 7 5 0 0 6 0 2 0 8

8 0 4  8 tens 4 units 6 7 6 0 4 0 0 0 8 0 0 2 0 0 4 0 4 8 2 4 5 6 2 8 7 5 0 0 6 0 2 0 8 4 thousands 1 0 0 5 0 0 6 0 15 hundreds 12 tens 8 units 8 1 0 0 0 8 0 0 2 0 sum it up 120 4 0 0 0 2 0 0 4 0 1500 + 4000 1 0 0 0 5 0 0 0 1 0 0 6 0 0 2 0 5 0 0 0 6 0 0 2 0 8 5628 =

825  379

825  379  hundreds tens units 8 2 5 3 7 9 sticks

ten-thousands 24 6 15 825  379 thousands hundreds  8 hundreds 2 tens 5 units 3 7 9 56 24 6 15 14 35 t-th th h tens 56 14 35 72 th h t 72 18 45 h t u 18 units 45 intersections

 8 hundreds 2 tens 5 units 3 24 t-th 6 th 15 h 7 56 14 35 t 9 72 18 45 u 825  379 arrow cards 8 0 0 2 0 5 3 0 0 2 0 0 0 0 0 4 0 0 0 0 6 0 0 0 1 0 0 0 5 0 0 7 0 5 0 0 0 0 6 0 0 0 1 0 0 0 4 0 0 3 0 0 5 0 9 7 0 0 0 2 0 0 1 0 0 8 0 4 0 5

8 0 0 2 0 5 3 0 0 2 0 0 0 0 0 4 0 0 0 0 6 0 0 0 1 0 0 0 5 0 0 7 0 5 0 0 0 0 6 0 0 0 1 0 0 0 4 0 0 3 0 0 5 0 9 7 0 0 0 2 0 0 1 0 0 8 0 4 0 5  8 hundreds 2 tens 5 units 3 t-th th h 7 t 9 u 825  379 24 6 15 56 14 35 color the small lattice 72 18 45

 8 hundreds 2 tens 5 units 3 t-th th h 7 t 9 u 825  379 24 6 15 56 14 35  8 hundreds 2 tens 5 units 3 t-th th h 7 t 9 u 72 18 45 2 4 6 1 5 5 6 1 4 3 5 diagonals 7 2 1 8 4 5

 8 hundreds 2 tens 5 units 3 t-th th h 7 t 9 u sum it up 2 4 6 1 5 5 170 5 6 1 4 3 5 1500 21000 2 lakhs 7 2 1 8 4 5 90000 + 200000 9 ten-thousands 312675 21 thousands 15 hundreds 17 tens 5 units

26859  3714

3  2 = 6 3  6 = 18 3  8 = 24 3  5 = 15 3  9 = 27 7  2 = 14 7  6 = 42 7  8 = 56 7  5 = 35 7  9 = 63 1  2 = 2 1  6 = 6 1  8 = 8 1  5 = 5 1  9 = 9 4  2 = 8 4  6 = 24 4  8 = 32 4  5 = 20 4  9 = 36  2 6 8 5 9 3 7 1 4 6 1 8 2 4 1 5 2 7 1 4 4 2 5 6 3 5 6 3 2 6 8 5 9 8 2 4 3 2 2 0 3 6

 2 6 8 5 9 3 1 8 2 4 1 5 2 7 7 1 4 4 2 5 6 3 5 6 3 1 4 3 2 2 0 3 6 sum it up 6 120 1200 diagonals 33000 320000 8 crore 1400000 18000000 18 ten-lakhs + 80000000 14 lakhs 32 ten- thousands 33 thousands 12 hundreds 12 tens 6 units 99754326