Chapter 29 Magnetic Fields due to Currents Key contents Biot-Savart law Ampere’s law The magnetic dipole field.

Slides:



Advertisements
Similar presentations
Magnetic Fields Due To Currents
Advertisements

Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Sources of the Magnetic Field
Chapter 32 Magnetic Fields.
Phy 213: General Physics III Chapter 29: Magnetic Fields to Currents Lecture Notes.
Physics 121 Practice Problem Solutions 10 Magnetic Fields from Currents (Biot-Savart and Ampere’s Law) Contents: 121P10 - 1P, 5P, 8P, 10P, 19P, 29P,
Sources of Magnetic Field Chapter 28 Study the magnetic field generated by a moving charge Consider magnetic field of a current-carrying conductor Examine.
Dr. Jie ZouPHY Chapter 30 Sources of the Magnetic Field.
Dale E. Gary Wenda Cao NJIT Physics Department
Physics 121: Electricity & Magnetism – Lecture 10 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Physics 152 Magnetism Walker, Chapter B Field Outside a Wire Earlier we said that magnetic fields are created by moving charges. A current in a.
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
Chapter 29 Magnetic Fields due to Currents Key contents Biot-Savart law Ampere’s law The magnetic dipole field.
Lecture 9 Magnetic Fields due to Currents Chp. 30 Cartoon - Shows magnetic field around a long current carrying wire and a loop of wire Opening Demo -
Ampere’s Law AP Physics C Mrs. Coyle Andre Ampere.
The Magnetic Field of a Solenoid AP Physics C Montwood High School R. Casao.
AP Physics C Montwood High School R. Casao
Sources of the Magnetic Field
Chapter 20 The Production and Properties of Magnetic Fields.
1 Chapter 29: Magnetic Fields due to Currents Introduction What are we going to talk about in chapter 30: How do we calculate magnetic fields for any distribution.
Magnetic Fields due to Currents Chapter 29 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Physics 202, Lecture 13 Today’s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between.
30.5 Magnetic flux  30. Fig 30-CO, p.927
Ampere’s Law The product of can be evaluated for small length elements on the circular path defined by the compass needles for the long straight wire.
Copyright © 2009 Pearson Education, Inc. Ampère’s Law.
Lecture 16 Magnetism (3) History 1819 Hans Christian Oersted discovered that a compass needle was deflected by a current carrying wire Then in 1920s.
Magnetic Fields due to Currentss
Physics 2102 Magnetic fields produced by currents Physics 2102 Gabriela González.
Magnetic Fields Due to Currents
22.7 Source of magnetic field due to current
Chapter 26 Sources of Magnetic Field. Biot-Savart Law (P 614 ) 2 Magnetic equivalent to C’s law by Biot & Savart . P. P Magnetic field due to an infinitesimal.
Lecture 28: Currents and Magnetic Field: I
Applications of Ampere’s Law
Magnetic Fields due to Currents Chapter 29 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Quiz 1 Borderline Trouble Deep Trouble.
Magnetic Fields due to Currents Chapter 29. The magnitude of the field dB produced at point P at distance r by a current-length element ds turns out to.
1 15. Magnetic field Historical observations indicated that certain materials attract small pieces of iron. In 1820 H. Oersted discovered that a compass.
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
The Biot-Savart Law. Biot and Savart recognized that a conductor carrying a steady current produces a force on a magnet. Biot and Savart produced an equation.
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec Magnetic fields are due to currents.
Chapter 30: Sources of the Magnetic Field
Electric Current Creates a Magnetic Field
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Magnetic Fields Due to Currents
Magnetic Fields due to Currents
Magnetic Fields and Forces
Chapter 3 Magnetostatics
Sources of the Magnetic Field
Magnetic Fields due to Currents
Magnetic Fields due to Currents
Lecture 9 Magnetic Fields due to Currents Ch. 30
Physics 2102 Lecture 16 Ampere’s law Physics 2102 Jonathan Dowling
Magnetic Fields due to Currents
Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec Magnetic fields are due to currents.
Announcements Tutoring available
Dr. Cherdsak Bootjomchai (Dr.Per)
Today: fundamentals of how currents generate magnetic fields
Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec Magnetic fields are due to currents.
Applications of Ampere’s Law
Magnetic Fields Due to Currents
Electricity, Magnetism and Optics FA18-BCS-C Dr. Shahzada Qamar Hussain.
Magnetic Fields Due to Currents
Magnetic Fields due to Currentss
Magnetic Field Due To A Current Loop.
Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec Magnetic fields are due to currents.
Sources of Magnetic Fields
Chapter 19 Magnetism.
Stationary Magnetic field
Presentation transcript:

Chapter 29 Magnetic Fields due to Currents Key contents Biot-Savart law Ampere’s law The magnetic dipole field

Calculating the Magnetic Field due to a Current Symbol  0 is a constant, called the permeability constant, whose value is In vector form # 1820, Hans Christian Oersted found the interaction between electric currents and compasses.

Magnetic Field due to a Long Straight Wire: Fig Iron filings that have been sprinkled onto cardboard collect in concentric circles when current is sent through the central wire. The alignment, which is along magnetic field lines, is caused by the magnetic field produced by the current. (Courtesy Education Development Center) The magnitude of the magnetic field at a perpendicular distance R from a long (infinite) straight wire carrying a current i is given by

Magnetic Field due to a Long Straight Wire:

Magnetic Field due to a Current in a Circular Arc of Wire:

Example, Magnetic field at the center of a circular arc of a circle.:

Example, Magnetic field off to the side of two long straight currents:

Force Between Two Parallel Wires:

Ampere’s Law: Curl your right hand around the Amperian loop, with the fingers pointing in the direction of integration. A current through the loop in the general direction of your outstretched thumb is assigned a plus sign, and a current generally in the opposite direction is assigned a minus sign.

Ampere’s Law, Magnetic Field Outside a Long Straight Wire Carrying Current:

Ampere’s Law, Magnetic Field Inside a Long Straight Wire Carrying Current:

Example, Ampere’s Law to find the magnetic field inside a long cylinder of current.

Solenoids and Toroids: Fig A vertical cross section through the central axis of a “stretched-out” solenoid. The back portions of five turns are shown, as are the magnetic field lines due to a current through the solenoid. Each turn produces circular magnetic field lines near itself. Near the solenoid’s axis, the field lines combine into a net magnetic field that is directed along the axis. The closely spaced field lines there indicate a strong magnetic field. Outside the solenoid the field lines are widely spaced; the field there is very weak.

Solenoids: Fig Application of Ampere’s law to a section of a long ideal solenoid carrying a current i. The Amperian loop is the rectangle abcda. Here n be the number of turns per unit length of the solenoid

Magnetic Field of a Toroid: where i is the current in the toroid windings (and is positive for those windings enclosed by the Amperian loop) and N is the total number of turns. This gives

Example, The field inside a solenoid:

(Gauss theorem in vector analysis) (Gauss’ law in differential form)

(Stokes theorem in vector analysis) (Ampere’s law in differential form)

A Current Carrying Coil as a Magnetic Dipole:

A general form for the magnetic dipole field is

Key contents Biot-Savart law Ampere’s law The magnetic dipole field