Volume 9, Issue 5, Pages (December 2014)

Slides:



Advertisements
Similar presentations
Tzachi Hagai, Ariel Azia, M. Madan Babu, Raul Andino  Cell Reports 
Advertisements

Volume 4, Issue 6, Pages e9 (June 2017)
Volume 2, Issue 3, Pages (March 2016)
Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources  Gene-Wei Li, David Burkhardt, Carol Gross,
Volume 10, Issue 4, Pages (October 2009)
Volume 21, Issue 13, Pages (December 2017)
Volume 4, Issue 6, Pages e9 (June 2017)
ppGpp Controls Global Gene Expression in Light and in Darkness in S
Volume 138, Issue 4, Pages (August 2009)
Expansion of Interstitial Telomeric Sequences in Yeast
Volume 13, Issue 9, Pages (December 2015)
Volume 68, Issue 1, Pages e5 (October 2017)
SAGA Is a General Cofactor for RNA Polymerase II Transcription
Volume 19, Issue 3, Pages (April 2017)
A Metabolic Function for Phospholipid and Histone Methylation
Volume 19, Issue 11, Pages (June 2017)
The Cost of Protein Production
Volume 13, Issue 11, Pages (December 2015)
A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation  Michal Rabani, Lindsey Pieper, Guo-Liang Chew,
Volume 4, Issue 1, Pages (July 2013)
Adrien Le Thomas, Georgi K. Marinov, Alexei A. Aravin  Cell Reports 
Fuqing Wu, David J. Menn, Xiao Wang  Chemistry & Biology 
Volume 15, Issue 8, Pages (May 2016)
Volume 66, Issue 1, Pages e5 (April 2017)
Volume 154, Issue 1, Pages (July 2013)
Volume 24, Issue 7, Pages (August 2018)
Volume 11, Issue 12, Pages (June 2015)
Volume 22, Issue 2, Pages (April 2006)
Volume 11, Issue 4, Pages (April 2018)
Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo
Determinants and Regulation of Protein Turnover in Yeast
Volume 12, Issue 6, Pages (December 2003)
Volume 44, Issue 2, Pages (October 2011)
Volume 14, Issue 7, Pages (February 2016)
Volume 4, Issue 5, Pages e5 (May 2017)
An RpaA-Dependent Sigma Factor Cascade Sets the Timing of Circadian Transcriptional Rhythms in Synechococcus elongatus  Kathleen E. Fleming, Erin K. O’Shea 
Volume 22, Issue 12, Pages (March 2018)
Volume 21, Issue 13, Pages (December 2017)
Volume 13, Issue 12, Pages (December 2015)
Volume 20, Issue 1, Pages 9-19 (October 2005)
Volume 70, Issue 2, Pages e7 (April 2018)
Volume 29, Issue 5, Pages (March 2008)
Volume 2, Issue 6, Pages (December 2012)
Is Proteomics the New Genomics?
Volume 137, Issue 1, Pages (April 2009)
Volume 22, Issue 3, Pages (January 2018)
Volume 5, Issue 4, Pages (November 2013)
Comparison of proteomics and RNA‐Seq data.
Alterations in mRNA 3′ UTR Isoform Abundance Accompany Gene Expression Changes in Human Huntington’s Disease Brains  Lindsay Romo, Ami Ashar-Patel, Edith.
Determination of mRNA synthesis and decay rates.
Volume 65, Issue 4, Pages e4 (February 2017)
Tzachi Hagai, Ariel Azia, M. Madan Babu, Raul Andino  Cell Reports 
The Coming Age of Complete, Accurate, and Ubiquitous Proteomes
Volume 24, Issue 2, Pages (July 2018)
Yuichiro Mishima, Yukihide Tomari  Molecular Cell 
Yun Wah Lam, Angus I. Lamond, Matthias Mann, Jens S. Andersen 
Yuanli Zhen, Yajie Zhang, Yonghao Yu  Cell Reports 
Differential protein, mRNA, lncRNA and miRNA regulation by p53.
Brandon Ho, Anastasia Baryshnikova, Grant W. Brown  Cell Systems 
Maria S. Robles, Sean J. Humphrey, Matthias Mann  Cell Metabolism 
Volume 26, Issue 12, Pages e5 (March 2019)
Volume 15, Issue 2, Pages (April 2016)
Volume 43, Issue 3, Pages (August 2011)
Volume 25, Issue 13, Pages e2 (December 2018)
Volume 2, Issue 3, Pages (March 2016)
Volume 10, Issue 1, Pages (January 2017)
Volume 19, Issue 11, Pages (June 2017)
Volume 92, Issue 2, Pages (October 2016)
Volume 25, Issue 9, Pages e4 (November 2018)
Volume 6, Issue 3, Pages (February 2014)
Presentation transcript:

Volume 9, Issue 5, Pages 1959-1965 (December 2014) Global Proteome Turnover Analyses of the Yeasts S. cerevisiae and S. pombe  Romain Christiano, Nagarjuna Nagaraj, Florian Fröhlich, Tobias C. Walther  Cell Reports  Volume 9, Issue 5, Pages 1959-1965 (December 2014) DOI: 10.1016/j.celrep.2014.10.065 Copyright © 2014 The Authors Terms and Conditions

Cell Reports 2014 9, 1959-1965DOI: (10.1016/j.celrep.2014.10.065) Copyright © 2014 The Authors Terms and Conditions

Figure 1 Quantifying Protein Turnover in S. cerevisiae and S. pombe (A) Experimental design for turnover measurements in yeasts. Decay curves for the indicated proteins in S. cerevisiae and S. pombe are shown. (B) Mass spectra after labeling of a peptide from Eno2 (AADALLK2+) in S. cerevisiae. The old peptide (“heavy,” red) decays as the newly synthesized peptide (“light,” green) increases in intensity during the time course of the experiment. (C) Log2(H/L) intensities from 40,452 peptides measured in two independent biological replicates. The insert shows the histogram distribution of log2(H/L) (mean = −0.0018, SD = 1.26 expressed as a fold change from the mean). (D) Histograms of protein half-lives in S. cerevisiae (red, dashed line indicates the median half-life = 8.8 hr) and S. pombe (blue, dashed line indicates the median half-life = 11.1 hr). Cell Reports 2014 9, 1959-1965DOI: (10.1016/j.celrep.2014.10.065) Copyright © 2014 The Authors Terms and Conditions

Figure 2 Protein Half-Life Differences in Distinct Sets of Proteins (A) Contributions of degradation (Kdeg) and protein dilution due to cell growth (Kdil) in S. cerevisiae and S. pombe. Log2(Kdeg/Kdil) ratios define three classes of protein abundance regulation: class I (Kdeg ≥ 2xKdil), class II (0.5xKdil ≤ Kdeg ≥ 2xKdil), and class III (Kdeg ≤ 2xKdil). (B) Gene Ontology (GO) analysis of class I and class II proteins in S. cerevisiae. (C) Comparison of protein abundances with ribosome footprint data in S. cerevisiae for proteins of class I (purple), class II (orange), and class III (green). (D) Comparison of protein abundances in class I, II, and III. (E) Sequence analysis of the 5′ UTR (30-mer ahead of start codon) of the 10% most abundant proteins in S. cerevisiae. Cell Reports 2014 9, 1959-1965DOI: (10.1016/j.celrep.2014.10.065) Copyright © 2014 The Authors Terms and Conditions

Figure 3 Protein Abundances, but Not Half-Lives, Are Evolutionarily Conserved between S. cerevisiae and S. pombe (A) Scatterplot comparing homologous protein abundances. (B) Scatterplot comparing homologous protein half-lives. (C) Cumulative density distribution of protein half-lives. (D) Half-life comparison of the large (RLP, MRLP) and the small (RSP, MRSP) subunits of the cytosolic and mitochondrial ribosomes. (E) Half-life comparison of proteins involved in the arginine biosynthetic pathway. Cell Reports 2014 9, 1959-1965DOI: (10.1016/j.celrep.2014.10.065) Copyright © 2014 The Authors Terms and Conditions

Figure 4 Quantitative Turnover Analysis Reveals the Evolution of Different Strategies to Control Ergosterol Metabolism Enzymes (A) The abundance of ergosterol synthetic enzymes is conserved in S. cerevisiae and S. pombe (yellow). (B) The half-lives of ergosterol synthesis enzymes are similar in S. pombe, whereas in S. cerevisiae, Erg1, Erg11, Erg3, Erg25, and Erg5 are short-lived proteins. In blue are anaerobically induced and Sre1-dependent genes in S. pombe and their counterparts in S. cerevisiae. (C) Plot of half-lives (yellow), transcripts abundances (light gray), and ribosome footprint (dark gray) for ergosterol synthesis enzymes. (D) Erg1 and Erg25 degradation followed by SILAC labeling decay in wild-type and hrd1Δ strains. (E) Half-life (yellow) and abundance (gray) fold changes of the indicated proteins in hrd1Δ compared with wild-type strains. (F) Representation of the regulation of the S. cerevisiae’s short-lived ergosterol metabolic enzymes (green, left) and their orthologs in S. pombe (right). ERAD ubiquitin ligases are in red, and previously characterized regulations are indicated in dashed dark red and new in dashed bright red. Previously described transcription factor regulation is indicated in blue. Cell Reports 2014 9, 1959-1965DOI: (10.1016/j.celrep.2014.10.065) Copyright © 2014 The Authors Terms and Conditions