Introduction to Scientific Computing II

Slides:



Advertisements
Similar presentations
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Advertisements

Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Mutigrid Methods for Solving Differential Equations Ferien Akademie 05 – Veselin Dikov.
Linear System Remark: Remark: Remark: Example: Solve:
Computational Modeling for Engineering MECN 6040
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
1 Iterative Solvers for Linear Systems of Equations Presented by: Kaveh Rahnema Supervisor: Dr. Stefan Zimmer
Steepest Decent and Conjugate Gradients (CG). Solving of the linear equation system.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 20 Solution of Linear System of Equations - Iterative Methods.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 19 Solution of Linear System of Equations - Iterative Methods.
Scientific Computing Matrix Norms, Convergence, and Matrix Condition Numbers.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Science Dr. Bixler-Zalesinsky. Question of the Day  What do you want to learn in Chemistry this year?
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 3- Chapter 12 Iterative Methods.
Numerical Analysis – Eigenvalue and Eigenvector Hanyang University Jong-Il Park.
Introduction to Scientific Computing II Overview Michael Bader.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
Elliptic PDEs and Solvers
Part 3 Chapter 12 Iterative Methods
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Iterative Solution Methods
Part 3 Chapter 12 Iterative Methods
Scientific Computing Lab
Solving Systems of Linear Equations: Iterative Methods
بسم الله الرحمن الرحيم.
Numerical Analysis Lecture12.
Scientific Computing Lab
Iterative Methods Good for sparse matrices Jacobi Iteration
Introduction to Multigrid Method
Introduction to Scientific Computing II
Pressure Poisson Equation
Numerical Analysis Lecture 45.
Scientific Computing Lab
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Stencil Quiz questions
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Stencil Quiz questions
Scientific Computing Lab
Numerical Analysis Lecture13.
Scientific Computing Lab
Numerical Linear Algebra
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Engineering Analysis ENG 3420 Fall 2009
ITERATIVE METHODS Prepared by, Dr. L. Benedict Michael Raj
Linear Algebra Lecture 16.
Home assignment #3 (1) (Total 3 problems) Due: 12 November 2018
Presentation transcript:

Introduction to Scientific Computing II Institut für Informatik Scientific Computing In Computer Science Introduction to Scientific Computing II Relaxation Methods Dr. Miriam Mehl

Iterative Solvers – Principle series of approximations costs per iteration? convergence? stopping criterion?

Relaxation Methods – Gauss-Seidel

Relaxation Methods – Jacobi

Gauss-Seidel – Theory formula not helpfull in practice!!!

Jacobi – Theory formula not helpfull in practice!!!

Jacobi – Convergence eigenvectors of M? different frequencies convergence rate = maximal eigenvalue

Jacobi – Convergence worse for small h number of iterations: O(1/h)2