Zhaoyong Xi, Matthew J. Whitley, Angela M. Gronenborn  Structure 

Slides:



Advertisements
Similar presentations
Volume 21, Issue 3, Pages (March 2013)
Advertisements

Conformational Heterogeneity in the Activation Mechanism of Bax
Natalie K. Garcia, Miklos Guttman, Jamie L. Ebner, Kelly K. Lee 
Volume 22, Issue 4, Pages (April 2014)
Crystal Structure of Chicken γS-Crystallin Reveals Lattice Contacts with Implications for Function in the Lens and the Evolution of the βγ-Crystallins 
Volume 14, Issue 3, Pages (March 2006)
Volume 22, Issue 2, Pages (February 2014)
Ping Wang, Katelyn A. Doxtader, Yunsun Nam  Molecular Cell 
Sudha Chakrapani, Luis G. Cuello, D. Marien Cortes, Eduardo Perozo 
Volume 9, Issue 10, Pages (October 2002)
The Structure of the Cytoplasmic Domain of the Chloride Channel ClC-Ka Reveals a Conserved Interaction Interface  Sandra Markovic, Raimund Dutzler  Structure 
Volume 15, Issue 6, Pages (June 2007)
Lionel Costenaro, J. Günter Grossmann, Christine Ebel, Anthony Maxwell 
Dom Bellini, Miroslav Z. Papiz  Structure 
Structural Basis for Dimerization in DNA Recognition by Gal4
Volume 18, Issue 11, Pages (November 2010)
Volume 21, Issue 1, Pages 9-19 (January 2013)
Structure and Plasticity of Endophilin and Sorting Nexin 9
Volume 25, Issue 2, Pages (February 2017)
When Monomers Are Preferred: A Strategy for the Identification and Disruption of Weakly Oligomerized Proteins  Yufeng Tong, David Hughes, Lisa Placanica,
Volume 22, Issue 5, Pages (May 2014)
Volume 97, Issue 7, Pages (October 2009)
Volume 17, Issue 10, Pages (October 2009)
Volume 24, Issue 11, Pages (November 2016)
A Model for the Solution Structure of the Rod Arrestin Tetramer
Volume 19, Issue 7, Pages (July 2011)
Volume 24, Issue 4, Pages (April 2016)
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Structure and Plasticity of Endophilin and Sorting Nexin 9
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Yizhou Liu, Richard A. Kahn, James H. Prestegard  Structure 
Leonardus M.I. Koharudin, Angela M. Gronenborn  Structure 
Volume 26, Issue 2, Pages e3 (February 2018)
Volume 18, Issue 9, Pages (September 2010)
Volume 21, Issue 6, Pages (March 2006)
Volume 113, Issue 12, Pages (December 2017)
A Conformational Switch in the CRIB-PDZ Module of Par-6
XLF Regulates Filament Architecture of the XRCC4·Ligase IV Complex
Supertertiary Structure of the MAGUK Core from PSD-95
Volume 23, Issue 5, Pages (May 2015)
Volume 17, Issue 4, Pages (April 2009)
Volume 10, Issue 5, Pages (May 2002)
Volume 20, Issue 11, Pages (November 2012)
Deciphering the “Fuzzy” Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering  Samuel Sparks, Deniz B. Temel, Michael.
A Functional Proline Switch in Cytochrome P450cam
Volume 23, Issue 6, Pages (June 2015)
Volume 16, Issue 8, Pages (August 2008)
Volume 19, Issue 1, Pages (January 2011)
Volume 106, Issue 4, Pages (February 2014)
Conformational Heterogeneity in the Activation Mechanism of Bax
Volume 22, Issue 9, Pages (September 2014)
Volume 23, Issue 4, Pages (April 2015)
Scarlet S. Shell, Christopher D. Putnam, Richard D. Kolodner 
Volume 16, Issue 4, Pages (April 2008)
Volume 19, Issue 7, Pages (July 2011)
Volume 19, Issue 8, Pages (August 2011)
Volume 17, Issue 8, Pages (August 2009)
Volume 21, Issue 9, Pages (September 2013)
GTP-Dependent K-Ras Dimerization
Amyloid Fibrillation of Insulin under Water-Limited Conditions
Volume 23, Issue 4, Pages (April 2015)
Damian Dawidowski, David S. Cafiso  Structure 
Volume 14, Issue 2, Pages (February 2006)
Conformational Plasticity of the Immunoglobulin Fc Domain in Solution
Volume 25, Issue 9, Pages e3 (September 2017)
A Model for the Solution Structure of the Rod Arrestin Tetramer
Hybrid Structural Model of the Complete Human ESCRT-0 Complex
Miklos Guttman, Patrick Weinkam, Andrej Sali, Kelly K. Lee  Structure 
XLF Regulates Filament Architecture of the XRCC4·Ligase IV Complex
Volume 24, Issue 8, Pages (August 2016)
Presentation transcript:

Human βB2-Crystallin Forms a Face-en-Face Dimer in Solution: An Integrated NMR and SAXS Study  Zhaoyong Xi, Matthew J. Whitley, Angela M. Gronenborn  Structure  Volume 25, Issue 3, Pages 496-505 (March 2017) DOI: 10.1016/j.str.2017.02.001 Copyright © 2017 Elsevier Ltd Terms and Conditions

Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 1 Crystal Structures of Human βγ-Crystallins (A) Monomeric γD-crystallin (PDB: 1HK0). (B) Domain-swapped dimer of βB2-crystallin (PDB: 1YTQ). (C) Dimeric truncated βB1-crystallin (PDB: 1OKI). (D) The lattice tetramer of βB2-crystallin. One half of the tetramer (boxed in red) resembles the crystal structure of dimeric truncated βB1-crystallin. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 2 Concentration Dependence of the Molecular Mass of Full-Length βB2 Crystallin Using Size-Exclusion Chromatography (Superdex200 10/300 GL) in Conjunction with In-Line Multi-Angle Light Scattering and Refractive Index Detection (A) Elution profiles with the predicted molecular masses shown by rectangles. (B) Plot of the estimated molecular masses as a function of protein concentration. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 3 SAXS Analysis of Full-Length βB2-Crystallin at Different Concentrations (A and B) Background-subtracted SAXS intensity profiles (A) and Guinier plots for three different concentrations (B). (C and D) Pairwise distance distribution function P(r) (C) and Kratky plots (D). See also Figure S1 and Table S1. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 4 SAXS-Derived Protein Envelopes of Full-Length and Truncated βB2-Crystallin (A–H) The crystal structures of the domain-swapped dimer (A and E) and a pseudo face-en-face dimer (half of the lattice tetramer of βB2-crystallin, see boxed region in Figure 1D) (B and F) are embedded into the SAXS envelopes (red surface mesh) of full-length (A and B) and truncated (E and F) βB2-crystallin. A comparison is shown of the theoretical scattering profiles calculated by CRYSOL (red traces), using the coordinates of the domain-swapped dimer (C and G) and the pseudo face-en-face dimer (D and H), with the experimental scattering data (blue traces) of full-length (C and D) and truncated βB2-crystallin (G and H). See also Figures S2 and S3; Table S2. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 5 1H-15N TROSY-HSQC Spectrum at 800 MHz of 350 μM Triple 13C,15N,2H-Labeled Full-Length βB2-Crystallin Assignments are indicated by residue name and number. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 6 1H PRE Data of the 15N-Labeled C37V Mutant of Full-Length Dimeric βB2-Crystallin, Containing a Paramagnetic Tag in the N-Terminal Domain (A–D) Signal intensity ratios for MTSL- and dMTSL-labeled protein are plotted as a function of residue number for the N-terminal domain in (A) and the C-terminal domain in (B). Data for overlapping or unassigned resonances are not included. Residues whose resonances were broadened beyond detection after MTSL labeling are marked with asterisks. Structural mapping of the PRE effects onto the domain-swapped dimer (C) and the pseudo face-en-face dimer (half of the βB2-crystallin lattice tetramer, see boxed region in Figure 1D) (D). Residues that are associated with large PRE effects (Ipara/Idia < 0.3) are colored red, those exhibiting medium and moderate PRE effects (0.3 < Ipara/Idia < 0.7) orange, and those with small or no effects (Ipara/Idia > 0.7) unchanged. Residues with overlapping or unassigned resonances are colored gray. See also Figure S4. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 7 Resonance Intensity Decays for Several Residues in the 1:1 Mixed Samples of Full-Length dMTSL-15N-C37V/MTSL-14N-C37V and dMTSL-15N-C37V/dMTSL-14N-C37V βB2-Crystallin The normalized resonance intensities of the paramagnetic (red) and diamagnetic (black) sample are plotted for different T2 relaxation delays. (A) PRE effects are expected to be observable for a domain-swapped dimer, but not a face-en-face dimer. (B) PRE effects observed on the His132 and Gly160 amide resonances compatible with a face-en-face dimer. See also Figures S5 and S6. Structure 2017 25, 496-505DOI: (10.1016/j.str.2017.02.001) Copyright © 2017 Elsevier Ltd Terms and Conditions