Volume 18, Issue 5, Pages (January 2017)

Slides:



Advertisements
Similar presentations
Volume 70, Issue 4, Pages (May 2011)
Advertisements

Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer's disease mouse model  Lei Zhao, Neng Gong, Meng Liu,
Volume 86, Issue 5, Pages (June 2015)
Volume 26, Issue 17, Pages (September 2016)
Volume 19, Issue 8, Pages (May 2017)
Covalent Modification of DNA Regulates Memory Formation
Volume 82, Issue 1, Pages (April 2014)
Volume 88, Issue 3, Pages (November 2015)
Volume 21, Issue 2, Pages (August 1998)
Ca2+/Calcineurin-Dependent Inactivation of Neuronal L-Type Ca2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A  Philip J. Dittmer, Mark L.
NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca2+- Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin  Jennifer L.
Volume 139, Issue 4, Pages (November 2009)
Volume 13, Issue 3, Pages (October 2015)
Volume 60, Issue 2, Pages (October 2008)
DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific
Volume 23, Issue 8, Pages (May 2018)
Sensory Deprivation Unmasks a PKA-Dependent Synaptic Plasticity Mechanism that Operates in Parallel with CaMKII  Neil Hardingham, Nick Wright, James Dachtler,
Contactin Supports Synaptic Plasticity Associated with Hippocampal Long-Term Depression but Not Potentiation  Keith K. Murai, Dinah Misner, Barbara Ranscht 
Volume 47, Issue 6, Pages (September 2005)
Volume 11, Issue 9, Pages (June 2015)
Volume 11, Issue 12, Pages (June 2015)
Volume 26, Issue 17, Pages (September 2016)
Volume 16, Issue 8, Pages (August 2016)
The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility
Volume 4, Issue 3, Pages (August 2013)
Volume 23, Issue 9, Pages (May 2018)
Volume 89, Issue 5, Pages (March 2016)
The Environment versus Genetics in Controlling the Contribution of MAP Kinases to Synaptic Plasticity  Shaomin Li, Xuejun Tian, Dean M. Hartley, Larry.
The Retromer Supports AMPA Receptor Trafficking During LTP
Recruitment of N-Type Ca2+ Channels during LTP Enhances Low Release Efficacy of Hippocampal CA1 Perforant Path Synapses  Mohsin S. Ahmed, Steven A. Siegelbaum 
Volume 50, Issue 5, Pages (June 2006)
Volume 6, Issue 3, Pages (February 2014)
Sensory Deprivation Unmasks a PKA-Dependent Synaptic Plasticity Mechanism that Operates in Parallel with CaMKII  Neil Hardingham, Nick Wright, James Dachtler,
Volume 11, Issue 2, Pages (April 2015)
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Volume 41, Issue 1, Pages (January 2004)
Volume 92, Issue 1, Pages (October 2016)
Dynamic Control of Dendritic mRNA Expression by CNOT7 Regulates Synaptic Efficacy and Higher Cognitive Function  Rhonda L. McFleder, Fernanda Mansur,
Volume 123, Issue 1, Pages (October 2005)
Impaired Dendritic Expression and Plasticity of h-Channels in the fmr1−/y Mouse Model of Fragile X Syndrome  Darrin H. Brager, Arvin R. Akhavan, Daniel.
Volume 94, Issue 1, Pages e5 (April 2017)
Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period  Kyung-Seok Han, Samuel F. Cooke, Weifeng Xu  Cell.
Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory  Felix Leroy, David H. Brann, Torcato Meira, Steven.
Volume 131, Issue 1, Pages (October 2007)
Volume 82, Issue 1, Pages (April 2014)
Farah D. Lubin, J. David Sweatt  Neuron 
Volume 89, Issue 1, Pages (January 2016)
Volume 22, Issue 9, Pages (February 2018)
Calcium Release from Stores Inhibits GIRK
Matthew E. Klein, Pablo E. Castillo, Bryen A. Jordan  Cell Reports 
Volume 18, Issue 12, Pages (March 2017)
Volume 18, Issue 1, Pages (January 2017)
Volume 52, Issue 2, Pages (October 2006)
Kristina Valentinova, Manuel Mameli  Cell Reports 
Andrea McQuate, Elena Latorre-Esteves, Andres Barria  Cell Reports 
Volume 12, Issue 3, Pages (July 2015)
Volume 12, Issue 1, Pages (July 2015)
Volume 21, Issue 1, Pages (October 2017)
Volume 135, Issue 3, Pages (October 2008)
Volume 51, Issue 4, Pages (August 2006)
Genetic Dissection of Presynaptic and Postsynaptic BDNF-TrkB Signaling in Synaptic Efficacy of CA3-CA1 Synapses  Pei-Yi Lin, Ege T. Kavalali, Lisa M.
Volume 20, Issue 6, Pages (August 2017)
Volume 88, Issue 5, Pages (March 1997)
Volume 23, Issue 4, Pages (August 1999)
Social Isolation Induces Rac1-Dependent Forgetting of Social Memory
Ca2+/Calcineurin-Dependent Inactivation of Neuronal L-Type Ca2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A  Philip J. Dittmer, Mark L.
Volume 28, Issue 5, Pages e5 (July 2019)
Matthew T. Rich, Yanhua H. Huang, Mary M. Torregrossa  Cell Reports 
Irreplaceability of Neuronal Ensembles after Memory Allocation
The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility
Presentation transcript:

Volume 18, Issue 5, Pages 1109-1117 (January 2017) Autonomous CaMKII Activity as a Drug Target for Histological and Functional Neuroprotection after Resuscitation from Cardiac Arrest  Guiying Deng, James E. Orfila, Robert M. Dietz, Myriam Moreno-Garcia, Krista M. Rodgers, Steve J. Coultrap, Nidia Quillinan, Richard J. Traystman, K. Ulrich Bayer, Paco S. Herson  Cell Reports  Volume 18, Issue 5, Pages 1109-1117 (January 2017) DOI: 10.1016/j.celrep.2017.01.011 Copyright © 2017 The Author(s) Terms and Conditions

Cell Reports 2017 18, 1109-1117DOI: (10.1016/j.celrep.2017.01.011) Copyright © 2017 The Author(s) Terms and Conditions

Figure 1 CaMKII Inhibition Reduces Neuronal Injury (A) Experimental timeline. (B–E) Representative photomicrographs of hippocampal CA1 neurons from mice injected with 1 mg/kg scrambled control peptide tatSCR (B), 1 mg/kg tatCN21 (C), or hypothermia-treated (D) and hypothermia + tatCN21 treatment (E). (F) Quantification of ischemic neurons in CA1 region of hippocampus 3 days after CA/CPR. tatSCR injury, 53.2% ± 3.9% (n = 11); tatCN21, 28.9% ± 5.6% (n = 11); hypothermia, 31.9% ± 10.5% (n = 6); and tatCN21 + hypothermia, 6.0% ± 2.7% (n = 6). ∗p < 0.05 compared to tatSCR control; #p < 0.05 compared to tatCN21 or hypothermia-treated group. Error bars indicated SEM. Cell Reports 2017 18, 1109-1117DOI: (10.1016/j.celrep.2017.01.011) Copyright © 2017 The Author(s) Terms and Conditions

Figure 2 Autonomous CaMKII Activity Contributes to Ischemic Injury (A–F) CaMKII autophosphorylation at T286, total CaMKII were assessed in synaptosome (P2) membrane fraction (A) and cytosolic (S3) fraction (D) 3 hr following resuscitation by western analysis. Quantification of the ratio of phosphorylated CaMKII to total CaMKII in P2 fraction (B); sham, 1.0 ± 0.04 (n = 5) and CA/CPR, 1.6 ± 0.07 (n = 5). Analysis of S3 fraction (E); sham, 1.0 ± 0.08 and CA/CPR, 0.2 ± 0.02. Total CaMKII expression showed no differences in P2 fractions (C), but a significant decrease after CA/CPR in S3 fraction (F). ∗p < 0.05 compared to sham. (G and H) Representative photomicrographs of hippocampal CA1 neurons from WT control mice (G) and T286A mutant mice (H). (I) Quantification of ischemic neurons in CA1 region of hippocampus 3 days after CA/CPR (n = 8). ∗p < 0.05 compared to WT control mice. Error bars indicate SEM. Cell Reports 2017 18, 1109-1117DOI: (10.1016/j.celrep.2017.01.011) Copyright © 2017 The Author(s) Terms and Conditions

Figure 3 Optimized CaMKII Inhibitory Peptide Is Neuroprotective (A and B) The optimized CaMKII inhibitor CN19o, fused with tat sequence (tatCN19o) efficiently blocked both stimulated (A) and autonomous (B) activity of both mouse and human CaMKII (n = 3). (C) Quantification of tatCN19o IC50 in assay performed in presence of 2.5 nM CaMKII. (D–G) Representative photomicrographs of hippocampal CA1 neurons from mice injected with 0.001 mg/kg tatCN19o (D), 0.01 mg/kg tatCN19o (E), 0.1 mg/kg tatCN19o (F), or 1 mg/kg tatCN19o (G) i.v. 30 min after resuscitation and stained with H&E 3 days later. (H) Quantification of ischemic CA1 neurons 3 days after resuscitation; tatSCR (n = 11), 1 mg/kg = 53.2% ± 3.9% (n = 11); tatCN19o, 0.01 mg/kg = 10.9% ± 3.7% (n = 8); 0.1 mg/kg = 25.8% ± 8.8% (n = 8); and 1 mg/kg = 23.6% ± 10.8% (n = 7). ∗p < 0.05 compared to tatSCR control. Error bars indicate SEM. Cell Reports 2017 18, 1109-1117DOI: (10.1016/j.celrep.2017.01.011) Copyright © 2017 The Author(s) Terms and Conditions

Figure 4 Acute Inhibition of CaMKII Reduces Synaptic Deficits and Improves Memory Function (A) Experimental timeline. (B) Time course of fEPSP slope from sham mice (black), mice after CA/CPR only (red), CA/CPR + tatCN19o (blue), and CA/CPR + tatSCR (gray). (C) Quantification of change in fEPSP slope after 60 min following TBS (40 pulses) normalized to baseline. Sham LTP, 153.3% ± 9.6% of baseline (n = 8); sham + tatCN19o LTP 155.0% ± 8.6% of baseline (n = 6); CA/CPR, 109.5% ± 10.3% (n = 7); CA/CPR + tatSCR, 114.8% ± 7.7% of baseline (n = 7); CA/CPR + 0.01 tatCN19o, 149.6% ± 9.1% (n = 7). ∗p < 0.05 compared to sham; #p < 0.05 compared to tatCN19o-treated. (D) Input-output curve showing fEPSP slope plotted against stimulus intensity. (E) Quantification of paired-pulse ratio, 50-ms inter-stimulus interval. (F) Quantification of freezing behavior 24 hr after contextual fear conditioning in a novel environment (n = 5–8/group). ∗p < 0.05 compared to sham; #p < 0.05 compared to tatCN19o-treated. (G) Quantification of distance traveled in the open field task (n = 5–8/group). Error bars indicate SEM. Cell Reports 2017 18, 1109-1117DOI: (10.1016/j.celrep.2017.01.011) Copyright © 2017 The Author(s) Terms and Conditions