Volume 24, Issue 21, Pages (November 2014)

Slides:



Advertisements
Similar presentations
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Advertisements

Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Cortical Microtubule Contacts Position the Spindle in C
Yalei Chen, Melissa M. Rolls, William O. Hancock  Current Biology 
Flying Drosophila Orient to Sky Polarization
Colleen T. Skau, David R. Kovar  Current Biology 
Volume 88, Issue 2, Pages (October 2015)
Pattern and Component Motion Responses in Mouse Visual Cortical Areas
Identification and Characterization of Factors Required for Microtubule Growth and Nucleation in the Early C. elegans Embryo  Martin Srayko, Aynur Kaya,
History-Dependent Catastrophes Regulate Axonal Microtubule Behavior
Meiosis: Organizing Microtubule Organizers
Optic Flow Cues Guide Flight in Birds
Adam M. Corrigan, Jonathan R. Chubb  Current Biology 
Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy  Mary Williard.
Volume 23, Issue 4, Pages (February 2013)
Volume 26, Issue 13, Pages (July 2016)
Janet H. Iwasa, R. Dyche Mullins  Current Biology 
Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons  Kassandra M. Ori-McKenney, Lily Yeh.
Volume 24, Issue 22, Pages (November 2014)
Martin Bringmann, Dominique C. Bergmann  Current Biology 
Attention Robustly Gates a Closed-Loop Touch Reflex
Yusuke Hara, Murat Shagirov, Yusuke Toyama  Current Biology 
Volume 27, Issue 20, Pages e4 (October 2017)
Nimish Khanna, Yan Hu, Andrew S. Belmont  Current Biology 
Yuki Hara, Akatsuki Kimura  Current Biology 
Jason Samaha, Bradley R. Postle  Current Biology 
Yitao Ma, Dinara Shakiryanova, Irina Vardya, Sergey V Popov 
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Volume 27, Issue 21, Pages e7 (November 2017)
Volume 5, Issue 3, Pages (May 2012)
Phosphorylation of the Polarity Protein BASL Differentiates Asymmetric Cell Fate through MAPKs and SPCH  Ying Zhang, Xiaoyu Guo, Juan Dong  Current Biology 
Volume 23, Issue 1, Pages (January 2013)
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Kensaku Nomoto, Susana Q. Lima  Current Biology 
Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy  Mary Williard.
Lisa M. Fenk, Andreas Poehlmann, Andrew D. Straw  Current Biology 
The Origin of Phragmoplast Asymmetry
Jianing Yu, David Ferster  Neuron 
Volume 13, Issue 2, Pages (January 2003)
She1-Mediated Inhibition of Dynein Motility along Astral Microtubules Promotes Polarized Spindle Movements  Steven M. Markus, Katelyn A. Kalutkiewicz,
Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein  Yoshihisa Oda, Yuki Iida, Yuki Kondo,
Optic Flow Cues Guide Flight in Birds
The Centriolar Protein Bld10/Cep135 Is Required to Establish Centrosome Asymmetry in Drosophila Neuroblasts  Priyanka Singh, Anjana Ramdas Nair, Clemens.
Volume 19, Issue 13, Pages (July 2009)
Einat S. Peled, Zachary L. Newman, Ehud Y. Isacoff  Current Biology 
Volume 25, Issue 3, Pages (February 2015)
Myosin 2-Induced Mitotic Rounding Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues  Soline Chanet, Rishabh Sharan, Zia.
Pattern and Component Motion Responses in Mouse Visual Cortical Areas
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
Volume 23, Issue 9, Pages (May 2013)
Volume 23, Issue 21, Pages R963-R965 (November 2013)
Volume 23, Issue 13, Pages (July 2013)
Dynein Tethers and Stabilizes Dynamic Microtubule Plus Ends
The Augmin Connection in the Geometry of Microtubule Networks
Microtubule Severing at Crossover Sites by Katanin Generates Ordered Cortical Microtubule Arrays in Arabidopsis  Quan Zhang, Erica Fishel, Tyler Bertroche,
Three-Step Model for Polarized Sorting of KIF17 into Dendrites
Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein  Yoshihisa Oda, Yuki Iida, Yuki Kondo,
Nicole M. Mahoney, Gohta Goshima, Adam D. Douglass, Ronald D. Vale 
Volume 27, Issue 21, Pages e7 (November 2017)
Nuclear Repulsion Enables Division Autonomy in a Single Cytoplasm
Global Compression Reorients Cortical Microtubules in Arabidopsis Hypocotyl Epidermis and Promotes Growth  Sarah Robinson, Cris Kuhlemeier  Current Biology 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Jeffrey K. Moore, Valentin Magidson, Alexey Khodjakov, John A. Cooper 
Volume 23, Issue 9, Pages (May 2013)
The Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics
Søren K. Andersen, Steven A. Hillyard, Matthias M. Müller 
Taro Ohkawa, Matthew D. Welch  Current Biology 
Volume 113, Issue 11, Pages (December 2017)
Joshua S. Weinger, Minhua Qiu, Ge Yang, Tarun M. Kapoor 
Nimish Khanna, Yan Hu, Andrew S. Belmont  Current Biology 
Presentation transcript:

Volume 24, Issue 21, Pages 2548-2555 (November 2014) GCP-WD Mediates γ-TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis  Ankit Walia, Masayoshi Nakamura, Dorianne Moss, Viktor Kirik, Takashi Hashimoto, David W. Ehrhardt  Current Biology  Volume 24, Issue 21, Pages 2548-2555 (November 2014) DOI: 10.1016/j.cub.2014.09.013 Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 1 Branching and Parallel Modes of Microtubule Nucleation from Locations Defined by GCP-WD-GFP Particles in Pavement Cells (A) Time series showing a branched nucleation event. Arrowheads indicate the GCP-WD-GFP particle at the site of nucleation. Arrows indicate the growing end of a nucleated microtubule. The scale bar represents 2 μm. (B) The dashed blue line shows the location of the kymograph line. (C) Kymograph of the event shown in (B). The scale bar represents 2 μm. (D) Time series showing a parallel nucleation event. Top: growing plus ends generated by a positive difference image subtraction method [20] (green), superimposed on mCherry-TUA5 (gray scale). Arrowheads indicate the GCP-WD-GFP particle at the site of nucleation. Arrows indicate the growing end of a microtubule nucleated in parallel to the pre-existing microtubule. The scale bar represents 2 μm. (E) The dashed blue line shows the location of the kymograph line. (F) Kymograph of the event shown in (E). The scale bar represents 2 μm. (G) Histogram of GCP-WD-GFP residency times. (H and I) Histograms of residency times where nucleation was detected versus not detected. (J) Probabilities of detecting nucleation of different modes (n = 172 events in 7 cells, 5 seedlings). (K) Histogram of microtubule branching angles. (L) Histogram of time intervals between GCP-WD-GFP recruitment and detection of nucleation. See also Figures S1 and S2 and Movies S1 and S2. Current Biology 2014 24, 2548-2555DOI: (10.1016/j.cub.2014.09.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 2 Colocalization of GCP-WD-GFP Particles with Cortical Microtubules, Motility of GCP-WD-GFP Particles, and Colocalization of GCP-WD and GCP2 (A) High colocalization of GCP-WD-GFP recruitment with the cortical microtubule signal. Left: first frame of a GCP-WD-GFP particle recruitment event mapped onto the image of thresholded microtubule signal for that same frame. Right: mapped recruitment events displayed on a frame-averaged image of an mCherry-TUA5 signal for the series. Statistics are reported on the far right. The scale bar represents 10 μm. (B) GCP-WD-GFP particle shows motility before it stabilizes at a fixed location. Below each image is a map of the particle trajectory where the current position is shown as a green circle and past positions are shown as blue lines. The scale bar represents 2 μm. (C) Simultaneous recruitment of GCP-WD-GFP (blue arrowheads) and GCP2-mCherry (yellow arrowheads) at a 5 s time resolution. The scale bar represents 2 μm. (D) Dynamic colocalization of GCP2-mCherry (yellow arrowheads) and GCP-WD-GFP (blue arrowheads). Left: select images from the time series. Right: tracks showing particle trajectories. The trajectories are highly correlated. The scale bar represents 2 μm. See also Figures S1 and S2 and Movie S3. Current Biology 2014 24, 2548-2555DOI: (10.1016/j.cub.2014.09.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 3 GCP-WD Function Governs γ-TuRC Recruitment Frequency, Nucleation Frequency, and Nucleation Mode (A) Histograms of γ-TuRC recruitment frequency in WT and RNAi plants (258 events for WT, 517 for RNAi). (B) γ-TuRC recruitment per NMS (232 events for WT, 430 for RNAi; ∗∗∗∗p < 0.0001, Mann-Whitney U test). (C) Histograms of microtubule nucleation frequency in WT and RNAi plants (65 events for WT, 107 for RNAi). (D) Nucleation events per NMS (63 events for WT, 103 for RNAi; ∗∗∗∗p < 0.0001, Mann-Whitney U test). (E) Nucleation frequencies in WT and RNAi plants (n = 172 nucleations in 45 cells; ∗∗∗∗p < 0.0001, Mann-Whitney U test). Error bars denote SEM. (F) Nucleation mode in WT and RNAi cells. The ratio of branching to parallel nucleation inverted from 1.8:1 for WT to 0.7:1 for RNAi (p < 0.01, Fisher’s exact test, two tailed). (G and H) Histograms of branch nucleation angles. The distributions of the branch angles were significantly different (p < 0.001, Mann-Whitney U test). (I) Probability of nucleation in WT and RNAi plants (ns, not significantly different). Error bars indicate 95% confidence interval (C.I.). (J) Mean time to detect nucleation in WT and RNAi cells (11.49 s ± 6.3 in WT versus 12.4 s ± 8.3 in RNAi). In the boxplot graphs, whiskers denote 1.5 interquartile ranges from the box and circles indicate outlying values beyond the whiskers. See also Figure S3 and Movie S4. Current Biology 2014 24, 2548-2555DOI: (10.1016/j.cub.2014.09.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Figure 4 GCP-WD Is Required for Cortical Microtubule Organization and Pavement Cell Shape (A) Microtubule organization in WT and GCP-WD knockdown cells. The scale bar represents 20 μm. (B) Histograms showing nematic order in WT (0.23 ± 0.14), RNAi (0.52 ± 0.18), and Ct-GCP-WD OX (0.46 ± 0.14) cells. (C) Pavement cell shape in WT and GCP-WD knockdown plants. Asterisks indicate cell-wall stubs. The scale bar represents 50 μm. (D) Histograms showing circularity exhibited in WT (0.18 ± 0.05), RNAi (0.25 ± 0.09), and Ct-GCP-WD OX (0.28 ± 0.09) pavement cells (p < 0.0001, Mann-Whitney U test). (E) Histograms showing cell size in WT (3,989 μm2 ± 1,823), RNAi (5,538 μm2 ± 3,429), and Ct-GCP-WD OX (5,364 μm2 ± 3,905) pavement cells (p < 0.0001, F test for heterogeneity of variance). See also Figures S3 and S4. Current Biology 2014 24, 2548-2555DOI: (10.1016/j.cub.2014.09.013) Copyright © 2014 Elsevier Ltd Terms and Conditions