Summary of validation studies of the simplified geometry

Slides:



Advertisements
Similar presentations
Impact parameter studies with early data from ATLAS
Advertisements

Status of the LHCb Experiment 杨振伟 Tsinghua Group on LHCb 2010 高能物理学术年会.
Measuring the bb cross- section using B  D o X   decays Liming Zhang & Sheldon Stone Syracuse University.
III Convegno sulla Fisica di ALICE. Frascati 1 Vertex reconstruction and selection strategies for D s detection in Pb-Pb collisions Sergey Senyukov,
More on making fake TT clusters More creating Fake TT clusters We can compute the number of combinations instead of the purity (following all the possible.
Measuring the bb cross- section using B  D o X   decays Liming Zhang & Sheldon Stone Syracuse University.
22 July 2005Mauro Donega HEP20051 B s lifetimes in hadronic decays at CDF Mauro Donegà Université de Genève on behalf of the CDF collaboration.
Increasing Field Integral between Velo and TT S. Blusk Sept 02, 2009 SU Group Meeting.
A Method to measure  + /   detection efficiency asymmetry at LHCb Liming Zhang 08/15/07.
Peter Fauland (for the LHCb collaboration) The sensitivity for the B S - mixing phase  S at LHCb.
Reconstruction of neutrino interactions in PEANUT G.D.L., Andrea Russo, Luca Scotto Lavina Naples University.
1 Track reconstruction and physics analysis in LHCb Outline Introduction to the LHCb experiment Track reconstruction → finding and fitting Physics analysis.
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
Tracking at LHCb Introduction: Tracking Performance at LHCb Kalman Filter Technique Speed Optimization Status & Plans.
19/07/20061 Nectarios Ch. Benekos 1, Rosy Nicolaidou 2, Stathes Paganis 3, Kirill Prokofiev 3 for the collaboration among: 1 Max-Planck-Institut für Physik,
1 Performance Studies for the LHCb Experiment Performance Studies for the LHCb Experiment Marcel Merk NIKHEF Representing the LHCb collaboration 19 th.
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
Hadronic Interaction Studies for LHCb Nigel Watson/Birmingham [Thanks to Silvia M., Jeroen v T.]
Track extrapolation to TOF with Kalman filter F. Pierella for the TOF-Offline Group INFN & Bologna University PPR Meeting, January 2003.
LHCb Lausanne Workshop, 21st March /12 Tracking Software for DC’06 E. Rodrigues, NIKHEF LHCb Tracking and Alignment Workshop  To do list, and done.
Prospects for B  hh at LHCb Eduardo Rodrigues On behalf of the LHCb Collaboration CKM2008 Workshop, Rome, 9-13 September 2008 LHCb.
18 december 2002, NIKHEF Jamboree Tracking and Physics Studies, Jeroen van Tilburg 1 Tracking and Physics Studies in LHCb Jeroen van Tilburg NIKHEF Jaarvergadering.
Refitting Tracks from DST E. Rodrigues, NIKHEF LHCb Tracking and Alignment Workshop, Lausanne, 8-9th November 2006  Motivations  Step-by-step …  Current.
Louis Nicolas – LPHE-EPFL T-Alignment: Track Selection December 11, 2006 Track Selection for T-Alignment studies Louis Nicolas EPFL Monday Seminar December.
26 June 2006Imaging2006, Stockholm, Niels Tuning 1/18 Tracking with the LHCb Spectrometer Detector Performance and Track Reconstruction Niels Tuning (Outer.
CHARM MIXING and lifetimes on behalf of the BaBar Collaboration XXXVIIth Rencontres de Moriond  March 11th, 2002 at Search for lifetime differences in.
LHCb: Preparing for Data (A talk on MC events and data expectations) NIKHEF Colloquium Feb 4, 2005 Marcel Merk.
Lukens - 1 Fermilab Seminar – July, 2011 Observation of the  b 0 Patrick T. Lukens Fermilab for the CDF Collaboration July 2011.
1 Fast Pixel Simulation Howard Wieman, Xiangming Sun Lawrence Berkeley Lab.
LHCb performance for B s  J/   and B d  J/  K s decays Jeroen van Hunen.
Barbara Storaci, Wouter Hulsbergen, Nicola Serra, Niels Tuning 1.
Calo Calibration Meeting 29/04/2009 Plamen Hopchev, LAPP Calibration from π 0 with a converted photon.
Jeroen van Hunen (for the LHCb collaboration) The sensitivity to  s and  Γ s at LHCb.
4/12/05 -Xiaojian Zhang, 1 UIUC paper review Introduction to Bc Event selection The blind analysis The final result The systematic error.
Kalanand Mishra June 29, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
July 22, 2002Brainstorming Meeting, F.Teubert L1/L2 Trigger Algorithms L1-DAQ Trigger Farms, July 22, 2002 F.Teubert on behalf of the Trigger Software.
3 May 2003, LHC2003 Symposium, FermiLab Tracking Performance in LHCb, Jeroen van Tilburg 1 Tracking performance in LHCb Tracking Performance Jeroen van.
Electron and Photon HLT alley M. Witek K. Senderowska, A. Żurański.
1 Status of LHCb detector optimization LHCC Open Session CERN, 27 November 2002 On behalf of the LHCb Collaboration Tatsuya Nakada CERN and University.
1 outline ● Part I: some issues in experimental b physics ● why study b quarks? ● what does it take? ● Part II: LHCb experiment ● Part III: LHCb first.
TrackFixup (overview)
Inclusive Tag-Side Vertex Reconstruction in Partially Reconstructed B decays -A Progress Report - 11/09/2011 TDBC-BRECO.
Measurement of track length and time-of-flight hypothesis
Physics Software Towards first Physics data Reconstruction Alignment
Charles F. Maguire Vanderbilt University
Eduardo Rodrigues, Chris Parkes University of Glasgow
The LHC collider in Geneva
VELO systematics and physics LHCb VELO meeting, CERN, 28 March 2008
The Level-0 Calorimeter Trigger and the software triggers
Reddy Pratap Gandrajula (University of Iowa) on behalf of CMS
Niels Tuning (Outer Tracker Group LHCb)
Overview of LHCb Poland Ukraine Brazil UK Switzerland France Spain
LHCb Particle Identification and Performance
Bs  μ+μ- in LHCb Diego Martínez Santos
Performance Studies for the LHCb Experiment
CP violation in Bs→ff and Bs → K*0K*0
Prospects for quarkonium studies at LHCb
Julie Kirk Rutherford Appleton Laboratory
B Physics at the LHC Neville Harnew University of Oxford.
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
Missing B-tracks in L1 trigger
Contents First section: pion and proton misidentification probabilities as Loose or Tight Muons. Measurements using Jet-triggered data (from run).
Paul Sail, Lars Eklund and Alison Bates
Vincenzo Vagnoni INFN Bologna CKM Workshop Durham, April 8th 2003
LHCb Trigger LHCb Trigger Outlook:
Paul Sail, Lars Eklund and Alison Bates
Paul Sail, Lars Eklund and Alison Bates
Reconstruction and calibration strategies for the LHCb RICH detector
Observation of non-BBar decays of (4S)p+p- (1S, 2S)
Presentation transcript:

Summary of validation studies of the simplified geometry Eduardo Rodrigues University of Glasgow LHCb Tracking & Alignment workshop, CERN, 10-12 June 2008 A summary of several studies: W. Hulsbergen, T-Rec meeting, 17/9/2007 M. Needham, T-Rec meeting, 3/12/2007 M. Gersbeck, E. Rodrigues, T-Rec meeting, 29/4/2008 U. Kerzel, T-Rec meeting, 29/4/2008, 5/5/2008 S. Hansmann-Menzemer, W. Hulsbergen, private communication, 5/2008

Simplified geometry  what are the consequences Simplified description of the detector material as seen by a particle traversing LHCb Simplified modules assigned material properties from average of nominal geometry 28 volumes: - 19 boxes - 9 cylinders  what are the consequences for tracking and physics? Eduardo Rodrigues

Timing S. Hansmann-Menzemer

Timing  what are the consequences for tracking and physics? S. Hansmann-Menzemer Timing in Brunel: ~2900ms/event (standard geom.)  1950ms/event (simplified geom.) on a 2.8 GHz Xeon          simplified    detailed  Brunel         462          691          Reco           387           609          RecoTrSq   213           435          Fit            128            348  Brunel is reduced to 67% of its timing Overall tracking speeds up by 50% Fitting itself is reduced to about 37% of its time  what are the consequences for tracking and physics? Eduardo Rodrigues

Tracking validation M. Gersabeck, W. Hulsbergen, M. Needham, E. Rodrigues

Effect on pattern recognition (1/4) M. Gersabeck, E. Rodrigues Pattern recognition efficiencies for long tracks Number of selected B  hh events VeloR VeloSpace Forward Matching Nselected Standard 98.03(9) 97.03(8) 85.9(2) 81.1(2) 4141 Simplified 81.4(2) 4186 No change in PR efficiencies, as expected Slight increase in number of selected events - Numbers is brackets: error on last digit Eduardo Rodrigues

Effect on pattern recognition (2/4) M. Gersabeck, E. Rodrigues -------------------------------------------------------------- Pat. Rec. : Efficiency Clones long long > 5 GeV long long > 5 GeV VeloRZ : 98.0 % 98.9 % 2.4 % 1.8 % Velo3D : 97.0 % 98.2 % 2.4 % 1.9 % VeloTT : 2.4 % 1.0 % 1.1 % 0.8 % Forward : 85.9 % 93.1 % 1.8 % 1.4 % Match : 81.1 % 88.2 % 0.0 % 0.0 % TSA : 91.8 % 95.9 % 0.7 % 1.0 % Best : 97.4 % 98.6 % 5.2 % 3.3 % Standard geometry -------------------------------------------------------------- Pat. Rec. : Efficiency Clones long long > 5 GeV long long > 5 GeV VeloRZ : 98.0 % 98.9 % 2.4 % 1.8 % Velo3D : 97.0 % 98.2 % 2.4 % 1.9 % VeloTT : 2.4 % 0.9 % 1.1 % 0.8 % Forward : 85.9 % 93.1 % 1.8 % 1.4 % Match : 81.4 % 88.3 % 0.0 % 0.0 % TSA : 91.8 % 95.9 % 0.7 % 1.0 % Best : 97.4 % 98.6 % 5.1 % 3.3 % Simplified geometry Eduardo Rodrigues

Effect on pattern recognition (3/4) M. Gersabeck, E. Rodrigues ------------------------------------- Pat. Rec. : # tracks Ghost rate VeloRZ : 87 10.41 % Velo3D : 79 7.02 % VeloTT : 10 25.44 % Forward : 30 15.36 % Match : 27 11.28 % TSA : 56 9.68 % Downstream : 35 36.66 % Best : 109 21.06 % Standard geometry ------------------------------------- Pat. Rec. : # tracks Ghost rate VeloRZ : 87 10.41 % Velo3D : 79 7.02 % VeloTT : 10 25.52 % Forward : 30 15.36 % Match : 27 11.58 % TSA : 56 9.68 % Downstream : 35 36.99 % Best : 109 21.14 % Simplified geometry Eduardo Rodrigues

Effect on pattern recognition (4/4) M. Gersabeck, E. Rodrigues Number of measurements per (long) track Eta distribution of reconstructed (long) tracks Eduardo Rodrigues

Effect on quality of long tracks (1/3) M. Gersabeck, E. Rodrigues x and y pulls at first measurement point Similar plots exist along the tracks (in VELO, TT, OT, etc.) Eduardo Rodrigues

Effect on quality of long tracks (2/3) M. Gersabeck, E. Rodrigues tx and ty pulls at first measurement point Similar along the tracks (in VELO, TT, OT, etc.) Eduardo Rodrigues

Effect on quality of long tracks (3/3) M. Gersabeck, E. Rodrigues Momentum resolution and pull at first measurement point Slight increase in bias: 0.05 (std)  0.12 (simplified) Slight increase in resolution (RMS): 0.60% (std)  0.63% (simplified) Eduardo Rodrigues

Effect on quality of long tracks (1/3) W. Hulsbergen Sigma of Gaussian fit to pull distributions of long tracks in 500 J/Y Ks events x,y, tx and ty pulls at vertex match well to full geometry Eduardo Rodrigues

Effect on quality of long tracks (2/3) W. Hulsbergen One 20mrad cone was added to represent the beampipe and the flanges 1/p pull versus eta and c2 probability Excellent agreement Eduardo Rodrigues

Effect on quality of long tracks (3/3) W. Hulsbergen Resolutions versus pseudorapidity Excellent agreement Eduardo Rodrigues

Effect on quality of long tracks M. Needham Red: full transport service Black: simplified transport service Simplified description overall a bit worse Eduardo Rodrigues

Physics validation M. Gersabeck, W. Hulsbergen, U. Kerzel, M. Needham, E. Rodrigues

Studies Validation with B  hh decays : M. Gersabeck, E. Rodrigues Validation with B  hh decays : Study on 20k B  hh events Produced with Brunel v32r2 and DaVinci v19r9 Simplified geometry used in Brunel Validation with Bs  KK decays: Lifetime measurement from CP specific mode Simultaneous unbinned mass/time fit Ran with Boole v14r6 and Brunel v31r11 Simplified geometry used when re-running reconstruction in DaVinci U. Kerzel Eduardo Rodrigues

Validation with B  hh events (1/3) M. Gersabeck, E. Rodrigues Momentum resolution for B-daughter pions B invariant mass and propertime resolutions Numbers correspond to sigmas of single-Gaussian fits to distributions for selected candidates p’s s(p)/p (%) B mass (MeV) B propertime (fs) Standard 0.495(5) 22.5(3) 37.7(5) Simplified 0.502(6) 22.9(4) 37.7(6) No significant degradation - Numbers is brackets: error on last digit Eduardo Rodrigues

Validation with B  hh events (2/3) M. Gersabeck, E. Rodrigues Simplified description might introduce effects dependent on f But no effect observed in the momentum resol. Also no significant difference observed for the slopes Eduardo Rodrigues

Validation with B  hh events (3/3) M. Gersabeck, E. Rodrigues Resolutions for vertexing Numbers correspond to sigmas of single-Gaussian fits to distributions for selected candidates Primary vertex (mm) x y z B-decay vertex (mm) Standard 9.2(1) 8.8(2) 41.4(7) 14.2(2) 14.0(2) 147(3) Simplified 8.9(1) 8.8(1) 14.3(2) 145(3) No significant degradation - Numbers is brackets: error on last digit Eduardo Rodrigues

Validation with Bs  KK events (1/4) U. Kerzel Colour: black: default setup red : simplified geometry Kaon pt true signal B momentum all candidates B momentum true signal Eduardo Rodrigues

Validation with Bs  KK events (2/4) U. Kerzel NoPIDKaons Excellent agreement NoPIDKaons for true signal Eduardo Rodrigues

Validation with Bs  KK events (3/4) U. Kerzel c2 of vertex fit true signal all candidates on ntuple lifetime-signed d0 w.r.t primary vertex lifetime-signed d0 w.r.t B decay vertex Eduardo Rodrigues

Validation with Bs  KK events (4/4) U. Kerzel Number of candidates on ntuple: Default setup: #candidates: 663932 #true BsKK : 24920 Simplified geometry: #candidates: 625625 #true BsKK : 25016 Lifetime fit: Default setup: τ(Bs→KK) = 446.9 ± 11.0 μm (stat.) τ(Bd→πK) = 499.2 ± 9.8 μm (stat.) Simplified geometry: τ(Bs→KK) = 450.3 ± 10.8 μm (stat.) τ(Bd→πK) = 496.0 ± 9.4 μm (stat.) some issues to be solved … e.g. lifetime bias Eduardo Rodrigues

Outlook No significant differences found in physics analyses between detailed and simplified geometries Simplified geometry validated in different and complementary manners No show-stopping features observed We will start data taking with the full geometry A new simplified description will be re-derived at a later stage This in turn will need to be validated  decision on using it by default … Eduardo Rodrigues