CEPC Injector positron source

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

ILC positron source simulation update Wanming Liu, Wei Gai ANL 03/20/2011.
Overview of 300 Hz Conventional e + Source for ILC Truly Conventional Collaboration ANL, IHEP, Hiroshima U, U of Tokyo, KEK, DESY, U of Hamburg NIM A672.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
Preliminary result on Quarter wave transformer simulation a short lens with a high magnetic field and a long solenoidal magnetic field. Field profile of.
Capture Simulation for ILC Electron-Driven Positron Source Y. Seimiya, M. Kuriki, T. Okugi, T. Omori, M. Satoh, J. Urakawa, and S. Kashiwagi 14 May 2014.
16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC e + sources status L. Rinolfi with contributions from F. Antoniou, H. Braun, A. Latina, Y. Papaphilippou,
Undulator Based ILC Positron Source Studies Wei Gai Argonne National Laboratory CCAST ILC Accelerator Workshop Beijing, Nov 5 – 7, 2007.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
1 C-Band Linac Development Satoshi Ohsawa 2004.Feb.19LCPAC.
Low Emittance RF Gun Developments for PAL-XFEL
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
1 Positron Target R&D at KEK Plan and Status AD&I Meeting 2009/8/27 KEK Hybrid Target Test at KEKB Linac Liquid Lead Target Test at ATF Linac Window Test.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Overview of 300 Hz Conventional e + Source for ILC T. Omori (KEK) 29-May-2013 ECFA LC Workshop at DESY Truly Conventional Collaboration ANL, IHEP, Hiroshima.
Status of the CLIC main beam injectors LCWS, Arlington, Texas, October 22 th -26 th, 2012Steffen Döbert, BE-RF Overview of the CLIC main beam injectors.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
Positron capture simulation for 300Hz electrondriven scheme M. Kuriki, Y. Seimiya, T. Takahashi (Hiroshima U.) T. Okugi, M. Sato, J. Urakawa, T. Omori.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Truly Conventional e + Source for ILC Special Thanks to Takahashi-san: About half of the slides are taken from Takahash-san's talk at ALCPG11 T. Omori.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
28 th August 2011 POSIPOL Workshop – IHEP-Beijing- ChinaL. Rinolfi Louis Rinolfi CLIC e + status.
Main Technical Issues of theSuper B Injector Main Technical Issues of the Super B Injector SuperB Meeting, Isola d’Elba, May 31st – June 3rd, 2008 D. Alesini,
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
A.Variola Frascati SuperB meeting 1 Injector and positron source scheme. A.Variola, O.Dadoun, F Poirier, R.Chehab, P Lepercq, R.Roux, J.Brossard.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Masao KURIKI (Hiroshima University)
+-- Collider Front end- Balbekov version
S.M. Polozov & Ko., NRNU MEPhI
Positron production rate vs incident electron beam energy for a tungsten target
Positron Source and Injector
Positron Sources of Next generation B-factories (SuperKEKB, SuperB)
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Test of Hybrid Target at KEKB LINAC
Positron capture section studies for CLIC Hybrid source - baseline
Status of the CLIC main beam injectors
NC Accelerator Structures
CLIC e+ status Louis Rinolfi.
CEPC injector high field S-band accelerating structure design and R&D
Truly Conventional e+ Source for ILC
Injection facility for Novosibirsk Super Charm Tau Factory
EffiCAS Efficient Facility for Ions at CAS
SuperB project. Injection scheme design status
ILC RDR baseline schematic (2007 IHEP meeting)
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
CLIC source update CLIC main beam injectors reminder
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
Status of the CLIC Injector studies
CEPC Injector Damping Ring
CEPC Injector positron source
Explanation of the Basic Principles and Goals
MEBT1&2 design study for C-ADS
Physics Design on Injector I
CEPC injector beam dynamics
CEPC Injector Linac beam dynamics
CEPC injector beam dynamics
J. Seeman Perugia Super-B Meeting June 2009
CEPC SRF Parameters (100 km Main Ring)
CEPC injector beam dynamics
Presentation transcript:

CEPC Injector positron source September 15th, 2017 C. Meng, G. Pei, J. Zhang, X. Li, S. Pei, Y. Chi, J. Gao Institute of High Energy Physics, CAS, Beijing

Sources design Positron source and capture section Layout Target FC (Flux concentrator) Capture section Large aperture accelerating tube r=15 mm FC (Flux concentrator)

Source design Positron source performances SLC LEP (LIL) KEKB/SUPER KEKB FCC-ee (conv.)* CEPC Incident e- beam energy 33 GeV 200 MeV 3.3/3.3 GeV 4.46 GeV 4 GeV e-/bunch [1010] 3-5 0.5 - 30 (20 ns pulse) 6.25/6.25 5.53 6.25 Bunch/pulse 1 2/2 2 Rep. rate 120 Hz 100 Hz 50 Hz/50 Hz 200 Hz 100Hz Incident Beam power ~20 kW 1 kW (max) 3.3 kW 15 kW 2.5 kW Beam size @ target 0.6 - 0.8 mm < 2 mm />0.7 mm 0.5 mm Target thickness 6X0 2X0 /4X0 4.5X0 Target size 70 mm 5 mm 14 mm 10mm Target Moving Fixed Fixed/Fixed Moving/Fixed Deposited power 4.4 kW /0.6 kW 2.7 kW 0.45kW Capture system AMD λ/4 transformer /AMD Magnetic field 6.8T->0.5T 1 T->0.3T /4.5T->0.4T 7.5T->0.5T 6T->0.5T Aperture of 1st cavity 18 mm 25mm/18 mm /30 mm 20 mm 25 mm Gradient of 1st cavity 30-40 MV/m ~10 MV/m /10 MV/m 30 MV/m 25 MV/m length of 1st cavity 1m 3m 2m 1.5m Linac frequency 2855.98 MHz 2998.55 MHz 2856.75 MHz e+ yield @ CS exit ~1.6 e+/e- ~0.003 e+/e- (linac exit) /~0.5 e+/e- ~0.7 e+/e- ~0.6 e+/e- Positron yield @ DR ~1.1 e+/e- 0.4 e+/e- DR energy acceptance +/- 2.5 % +/- 1 % (EPA) +/- 1.5 % (1 σ) +/- 8 % Energy of the DR 1.15 GeV 500 MeV NO/1.1 GeV 1.54 GeV

Accelerating tube Constant impedance Same size for each cell, same Q、υg、Zs、α0

Accelerating tube τ0 ~ 0.5-0.8 Constant impedance R=30 mm R=25 mm α0=0.054 18 MV/m R=25 mm υg=0.019 α0=0.1 25 MV/m Length 1.5m~1.8m τ0 ~ 0.5-0.8

Pre-accelerating section R=30 mm

Pre-accelerating section R=30mm

Pre-accelerating section R=30mm Phase [-5,10] Energy [100 130] MeV Ne+/Ne-=0.66 Beam size <10 mm Ne+/Ne-=0.57 3.2nc, 100% 3.2nc, 70%

Pre-accelerating section R=25 mm

Pre-accelerating section R=25mm

Pre-accelerating section R=25mm Phase [-5,10] Energy [140 170] MeV Ne+/Ne-=0.52 Beam size <10 mm Ne+/Ne-=0.5 3.2nc, 60% 3.2nc, 50%

Pre-accelerating section Summary Larger accelerating gradient, higher positron capture efficiency Larger aperture of accelerating tube, higher positron capture efficiency Considering power efficiency and positron capture efficiency, maybe the accelerating tube (R=25mm, Ea=25 MV/m, L=1.5m) is better. Need more cavity (200 MeV) simulation and further optimization.