Alain Pluen, Paolo A. Netti, Rakesh K. Jain, David A. Berk 

Slides:



Advertisements
Similar presentations
How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Advertisements

Adsorption of DNA to Mica Mediated by Divalent Counterions: A Theoretical and Experimental Study David Pastré, Olivier Piétrement, Stéphane Fusil, Fabrice.
Light-Scattering Studies of Protein Solutions: Role of Hydration in Weak Protein-Protein Interactions A. Paliwal, D. Asthagiri, D. Abras, A.M. Lenhoff,
Functional Analysis of the Neurofibromatosis Type 2 Protein by Means of Disease- Causing Point Mutations Renee P. Stokowski, David R. Cox The American.
The Nuclear Pore Complex Mystery and Anomalous Diffusion in Reversible Gels Thomas Bickel, Robijn Bruinsma Biophysical Journal Volume 83, Issue 6, Pages.
A Hydrodynamic Model for Hindered Diffusion of Proteins and Micelles in Hydrogels Ronald J. Phillips Biophysical Journal Volume 79, Issue 6, Pages
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Volume 92, Issue 3, Pages (February 2007)
Multiparticle Adhesive Dynamics
Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional.
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Characterizing Cell Adhesion by Using Micropipette Aspiration
Steve P. Meisburger, Suzette A. Pabit, Lois Pollack 
Precision and Variability in Bacterial Temperature Sensing
Precipitation of DNA by Polyamines: A Polyelectrolyte Behavior
Nitric Oxide Diffusion Rate is Reduced in the Aortic Wall
Refolding of a High Molecular Weight Protein: Salt Effect on Collapse
Kinetic Analysis of Protein Crystal Nucleation in Gel Matrix
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Volume 98, Issue 11, Pages (June 2010)
Michael T. Klann, Alexei Lapin, Matthias Reuss  Biophysical Journal 
Ariel Lubelski, Joseph Klafter  Biophysical Journal 
A.M. Stadler, I. Digel, G.M. Artmann, J.P. Embs, G. Zaccai, G. Büldt 
Jordi Soriano, Sten Rüdiger, Pramod Pullarkat, Albrecht Ott 
Lesson 9-5 Similar Solids.
Apparent Subdiffusion Inherent to Single Particle Tracking
A. Delon, Y. Usson, J. Derouard, T. Biben, C. Souchier 
Volume 99, Issue 5, Pages (September 2010)
Flexibility of Duplex DNA on the Submicrosecond Timescale
Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Lok Shun Ko, Thomas M. Quinn  Biophysical Journal 
Volume 99, Issue 8, Pages (October 2010)
Edmond Chow, Jeffrey Skolnick  Biophysical Journal 
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Christopher Deufel, Michelle D. Wang  Biophysical Journal 
Volume 97, Issue 1, Pages (July 2009)
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Random Hydrolysis Controls the Dynamic Instability of Microtubules
Low-Resolution Structures of Proteins in Solution Retrieved from X-Ray Scattering with a Genetic Algorithm  P. Chacón, F. Morán, J.F. Díaz, E. Pantos,
Volume 99, Issue 2, Pages (July 2010)
Lesson 9-5: Similar Solids
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 99, Issue 10, Pages (November 2010)
Samuel T. Hess, Watt W. Webb  Biophysical Journal 
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Volume 96, Issue 5, Pages (March 2009)
Volume 83, Issue 3, Pages (September 2002)
Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects
Dynamics of Active Semiflexible Polymers
Congju Chen, Irina M. Russu  Biophysical Journal 
Alessandro Paciaroni, Stefania Cinelli, Giuseppe Onori 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 86, Issue 5, Pages (May 2004)
M. Castellarnau, A. Errachid, C. Madrid, A. Juárez, J. Samitier 
A Theory of Protein Dynamics to Predict NMR Relaxation
Effects of Monovalent Anions of the Hofmeister Series on DPPC Lipid Bilayers Part II: Modeling the Perpendicular and Lateral Equation-of-State  E. Leontidis,
End-to-End Self-Assembly of RADA 16-I Nanofibrils in Aqueous Solutions
Jess V. Nauman, Phil G. Campbell, Frederick Lanni, John L. Anderson 
Volume 75, Issue 3, Pages (September 1998)
Lesson 9-5: Similar Solids
Volume 81, Issue 6, Pages (December 2001)
Nitric Oxide Diffusion Rate is Reduced in the Aortic Wall
Brian L. Sprague, Robert L. Pego, Diana A. Stavreva, James G. McNally 
Michael T. Klann, Alexei Lapin, Matthias Reuss  Biophysical Journal 
Simulating the Entropic Collapse of Coarse-Grained Chromosomes
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Emmanuel O. Awosanya, Alexander A. Nevzorov  Biophysical Journal 
Partition and Permeation of Dextran in Polyacrylamide Gel
Presentation transcript:

Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations  Alain Pluen, Paolo A. Netti, Rakesh K. Jain, David A. Berk  Biophysical Journal  Volume 77, Issue 1, Pages 542-552 (July 1999) DOI: 10.1016/S0006-3495(99)76911-0 Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 1 Experimental hydrodynamic radius, RHexp, extracted from the diffusion coefficients measured in solution for all ellipsoidal macromolecules in 0.1M PBS at I=25°C as a function of the hydrodynamic radius published in the literature, RHlit. The solid line represents the experimental dependence. Experimental hydrodynamic radii are 10% larger than literature data. Biophysical Journal 1999 77, 542-552DOI: (10.1016/S0006-3495(99)76911-0) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 2 Diffusion coefficients of all nonflexible macromolecules studied as a function of their hydrodynamic radius, RH, obtained in 0.1M PBS (●) and in 2% agarose gels (▾) and I=25°C. A sharp decrease of the diffusion coefficients is observed above RH=30nm, suggesting higher interactions between the matrix and the macromolecules. Biophysical Journal 1999 77, 542-552DOI: (10.1016/S0006-3495(99)76911-0) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 3 DNA diffusion coefficients, DG, in 2% agarose gels (▾) and the DNA diffusion coefficients, D0, in solution (●) as a function of their basepair number, N0, in 0.1M PBS at T=25°C. The slope indicated for the diffusion coefficients in gels corresponds to the scaling exponent −0.52, which is in good agreement with Zimm's predictions. The scaling exponent −2.0 is the theoretical scaling exponent given by the theory (Eq. 8) whereas the scaling exponent −1.55 is the result of the experimental fit. The value Rg=a/2 corresponds to theoretical change of regime between the Rouse regime and the reptation regime for the DNA in the gels. Biophysical Journal 1999 77, 542-552DOI: (10.1016/S0006-3495(99)76911-0) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 4 Ratio of diffusivities in solution (0.1M PBS) and in 2% agarose gels as a function of the hydrodynamic radius of different macromolecules (proteins, dextrans, beads). We assumed ϵ=0.985 for all models. The different models used are effective medium theory/Brinkman model (Eq. 12), Ogston model (Eq. 7), Renkin model (Eq. 11), and partition model (Eq. 10). Boundary limits mentioned in the theoretical part of this paper were taken into account in this figure. Biophysical Journal 1999 77, 542-552DOI: (10.1016/S0006-3495(99)76911-0) Copyright © 1999 The Biophysical Society Terms and Conditions