ECE 874: Physical Electronics

Slides:



Advertisements
Similar presentations
Chapter 2-4. Equilibrium carrier concentrations
Advertisements

Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Semiconductor Equilibrium
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d) – Thermal equilibrium – Fermi-Dirac distribution Boltzmann approximation – Relationship between E.
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
EEE209/ECE230 Semiconductor Devices and Materials
ECE 875: Electronic Devices
ECE 875: Electronic Devices
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
“Semiconductor Physics”
Manipulation of Carrier Numbers – Doping
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 2 OUTLINE Important quantities
ECE 875: Electronic Devices
Equilibrium carrier concentrations
Manipulation of Carrier Numbers – Doping
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Equilibrium Carrier Statistics
Introduction to Solid-state Physics Lecture 2
Lecture #5 OUTLINE Intrinsic Fermi level Determination of EF
Read: Chapter 2 (Section 2.3)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
ECE 874: Physical Electronics
ECE 874: Physical Electronics
Basic Semiconductor Physics
ECE 874: Physical Electronics
EE130/230A Discussion 5 Peng Zheng.
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 340 Lecture 6 Intrinsic Material, Doping, Carrier Concentrations
ECE 874: Physical Electronics
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 874: Physical Electronics
ECE 875: Electronic Devices
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
ECE 875: Electronic Devices
ECE 875: Electronic Devices
Presentation transcript:

ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

Lecture 23, 15 Nov 12 VM Ayres, ECE874, F12

With these expressions for n and p, can get several familiar results: VM Ayres, ECE874, F12

Familiar results: for EF =Ei: pi = VM Ayres, ECE874, F12

Familiar results: doped n and p in terms of intrinsic ni and Ei: VM Ayres, ECE874, F12

New result: Exact position of Ei: Step 1. Step 2. VM Ayres, ECE874, F12

New result: Exact position of Ei: VM Ayres, ECE874, F12

New result: effect of degenerate doping (Pr. 4.12): VM Ayres, ECE874, F12

New result: effect of degenerate doping (Pr. 4.12): “At the degenerate limit”: EC – EF = 3kT (EF – EC = -3kT) EF – EV = 3 kT (EV – EF = -3kT) VM Ayres, ECE874, F12

VM Ayres, ECE874, F12

Return to simple energy band diagrams: VM Ayres, ECE874, F12

Also: KE goes up as PE goes down, and vice versa PE: same shape as Ec. Also: KE goes up as PE goes down, and vice versa V: upside down from PE/Ec Plot of (-) slope of V n or p: check EF – Ei or Ei - EF VM Ayres, ECE874, F12

VM Ayres, ECE874, F12

Exponential donor doping L to R leading to uniform built-in electric field Schottky barrier between a p-type semiconductor and a metal having a smaller work function p-n-p transitor VM Ayres, ECE874, F12

(b) E : Plot of (-) slope of V PE: Same shape as Ec (a) V: Upside down from PE/Ec (b) E : Plot of (-) slope of V x E VM Ayres, ECE874, F12

(d) KE: PE goes down, KE goes up (c) PE: Same shape as Ec (d) KE: PE goes down, KE goes up (e) n or p: check EF – Ei or Ei - EF 0 n n n (log) Concentration (cm-3) x VM Ayres, ECE874, F12

(d) KE: PE goes down, KE goes up (c) PE: Same shape as Ec (d) KE: PE goes down, KE goes up (e) n or p: check EF – Ei or Ei - EF 0 n n n (log) Concentration (cm-3) p x VM Ayres, ECE874, F12

(b) E : Plot of (-) slope of V PE: Same shape as Ec (a) V: Upside down from PE/Ec (b) E : Plot of (-) slope of V E x VM Ayres, ECE874, F12

(d) KE: PE goes down, KE goes up PE: Same shape as Ec (d) KE: PE goes down, KE goes up (e) n or p: check EF – Ei or Ei - EF n n p pmax (log) Concentration (cm-3) x VM Ayres, ECE874, F12

(d) KE: PE goes down, KE goes up PE: Same shape as Ec (d) KE: PE goes down, KE goes up (e) n or p: check EF – Ei or Ei - EF n n p pmax (log) Concentration (cm-3) x VM Ayres, ECE874, F12

Chp. 05: Recombination-Generation Processes Skipping: space charge neutrality dopant ionization as a function of temperature Chp. 05: Recombination-Generation Processes VM Ayres, ECE874, F12