K. D. Novakofski, R. M. Williams, L. A. Fortier, H. O. Mohammed, W. R

Slides:



Advertisements
Similar presentations
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Advertisements

GDF5 reduces MMP13 expression in human chondrocytes via DKK1 mediated canonical Wnt signaling inhibition  L. Enochson, J. Stenberg, M. Brittberg, A. Lindahl 
L. J. Sandell, Ph. D. , X. Xing, M. D. , C. Franz, M. A. , S
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
L. Ding, E. Heying, N. Nicholson, N. J. Stroud, G. A. Homandberg, J. A
T1ρ relaxation time of the meniscus and its relationship with T1ρ of adjacent cartilage in knees with acute ACL injuries at 3T  R.I. Bolbos, Ph.D., T.M.
Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage  M.R. Ahmed, A. Mehmood,
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis  S. Lambrecht, M.Pharm.,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs  M.J. Farrell, J.I. Shin, L.J.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
C. R. Henak, C. L. Abraham, A. E. Anderson, S. A. Maas, B. J. Ellis, C
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
J.G Costouros, M.D., A.C Dang, H.T Kim, M.D., Ph.D. 
Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study  Chris A McGibbon,
X. Zhu, Y. Tang, J. Chen, S. Xiong, S. Zhuo, J. Chen 
The layered structure of the articular surface
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
V. Queirolo, D. Galli, E. Masselli, R. M. Borzì, S. Martini, F
R. Mhanna, E. Öztürk, P. Schlink, M. Zenobi-Wong 
The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium  A. Eitner, J. Pester, S. Nietzsche, G.O.
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma  C.A.M. Huser, M.Sc., M. Peacock, M.E. Davies,
A.W. Palmer, C.G. Wilson, E.J. Baum, M.E. Levenston 
L. McCann, E. Ingham, Z. Jin, J. Fisher  Osteoarthritis and Cartilage 
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
M. R. Doschak, Ph. D. , J. M. LaMothe, Ph. D. , D. M. L. Cooper, B. Sc
Nonlinear optical microscopy of articular cartilage
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
Changes of human menisci in osteoarthritic knee joints
Correlation of meniscal T2
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes  Z. Wang, J. Irianto,
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
S.I. Paterson, A.K. Amin, A.C. Hall  Osteoarthritis and Cartilage 
Osteoarthritis and Cartilage
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Who should have a joint replacement? A plea for more ‘phronesis’
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
S. Abubacker, H.O. Ham, P.B. Messersmith, T.A. Schmidt 
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis  D.H. Rosenzweig,
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
C. Zhou, H. Zheng, J.A. Martin  Osteoarthritis and Cartilage 
K.D. Novakofski, R.M. Williams, L.J. Bonassar, L.A. Fortier 
A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 
Mitoprotection as a strategy to prevent chondrocyte death and cartilage degeneration following mechanical injury  M.L. Delco, E.D. Bonnevie, H.H. Szeto,
Enhanced phagocytic capacity endows chondrogenic progenitor cells with a novel scavenger function within injured cartilage  C. Zhou, H. Zheng, J.A. Buckwalter,
Cartilage repair of the ankle: first results of T2 mapping at 7
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
A. Levillain, C. Boulocher, S. Kaderli, E. Viguier, D. Hannouche, T
Presentation transcript:

Identification of cartilage injury using quantitative multiphoton microscopy  K.D. Novakofski, R.M. Williams, L.A. Fortier, H.O. Mohammed, W.R. Zipfel, L.J. Bonassar  Osteoarthritis and Cartilage  Volume 22, Issue 2, Pages 355-362 (February 2014) DOI: 10.1016/j.joca.2013.10.008 Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Schematic of methods. (a) An OCB is injured with compressive loading. The injured site (b) and corresponding control site (c) are each scanned with MPM using a rasterized pattern, alternating scanned and non-scanned regions to encompass a 3.3 mm × 3.4 mm area. Individual 328 μm × 438 μm images that comprise the larger rasterized scanned area are shown in (d) and (e), with arrows denoting fluorescein-labeled dead cells. Osteoarthritis and Cartilage 2014 22, 355-362DOI: (10.1016/j.joca.2013.10.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 MPM images from a single-image plane within a z-stack, from both control and injured samples. Signal from the 380–490 nm channel (blue) and 510–650 nm channel (green) have been merged for clarity, resulting in collagen SHG and ECM autofluorescence appearing blue-green and fluorescein-stained cells appearing green. Control samples typically contained few fluorescein-stained cells and had regular SHG signal within the ECM. Injured samples typically contained more fluorescein-stained cells and irregular SHG signal, resulting from damaged matrix, such as cracks. Osteoarthritis and Cartilage 2014 22, 355-362DOI: (10.1016/j.joca.2013.10.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Sodium fluorescein and ethidium homodimer-1 validation. Cartilage was stained with both sodium fluorescein and ethidium homodimer-1 to determine the linear relationship between dyes to validate sodium fluorescein as a dead cell indicator. The linear relationship with a slope 1.049 and squared correlation coefficient r2 = 0.929 was determined. Osteoarthritis and Cartilage 2014 22, 355-362DOI: (10.1016/j.joca.2013.10.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Percentage of dead chondrocytes after injury, as a function of depth in 50 μm steps, as measured in the sagittal plane. The box represents the depth to which transverse MPM images were acquired for rasterized tile scanning, as described in the methods. The line demonstrates the mean depth to which samples were compressed. A total of n = 13 OCBs from n = 6 horses were analyzed for controls; a total of n = 10 OCBs from n = 6 horses were injured. Data is represented as the mean ± 95% CIs. * represents a significant difference between control and injured (p < 0.05) using a two-sample t-test. Osteoarthritis and Cartilage 2014 22, 355-362DOI: (10.1016/j.joca.2013.10.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 3-D reconstructions of control and injured cartilage. Each blue point represents a single dead chondrocyte in the control scanned site; each red point represents a single dead chondrocyte in the injured scanned site. Osteoarthritis and Cartilage 2014 22, 355-362DOI: (10.1016/j.joca.2013.10.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 2-D projections of control and injured cartilage. (a) A representative circular injury; (b) a representative elliptical injury. Each blue point represents a single dead chondrocyte in the control scanned site; each red point represents a single dead chondrocyte in the injured scanned site; the red lines represent the eigenvalues and eigenvectors; the transparent red shaded area denotes the area which corresponds with the eigenvectors. Osteoarthritis and Cartilage 2014 22, 355-362DOI: (10.1016/j.joca.2013.10.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions