Volume 13, Issue 6, Pages (November 2015)

Slides:



Advertisements
Similar presentations
Volume 5, Issue 5, Pages (November 2015)
Advertisements

Volume 19, Issue 8, Pages (May 2017)
Isabella Maiellaro, Martin J. Lohse, Robert J. Kittel, Davide Calebiro 
Volume 87, Issue 5, Pages (September 2015)
Volume 5, Issue 5, Pages (November 2015)
Volume 18, Issue 4, Pages (January 2017)
Volume 74, Issue 4, Pages (May 2012)
Volume 12, Issue 12, Pages (September 2015)
Volume 70, Issue 5, Pages (June 2011)
Antonio Jesús Hinojosa, Rubén Deogracias, Beatriz Rico  Cell Reports 
Volume 22, Issue 8, Pages (February 2018)
Volume 79, Issue 6, Pages (September 2013)
Volume 44, Issue 2, Pages (October 2004)
Volume 15, Issue 9, Pages (May 2016)
Volume 12, Issue 13, Pages (July 2002)
Volume 26, Issue 5, Pages (September 2013)
Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations  Zhenglin Gu, Georgia M.
Volume 8, Issue 6, Pages (September 2014)
Volume 89, Issue 5, Pages (March 2016)
Volume 3, Issue 1, Pages (July 2014)
Volume 87, Issue 5, Pages (September 2015)
Minimal Purkinje Cell-Specific PCP2/L7 Promoter Virally Available for Rodents and Non- human Primates  Keisuke Nitta, Yasunori Matsuzaki, Ayumu Konno,
Volume 19, Issue 8, Pages (May 2017)
Volume 11, Issue 6, Pages (May 2015)
Volume 88, Issue 4, Pages (November 2015)
Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice
Volume 14, Issue 11, Pages (March 2016)
Jialei Yang, Xiufen Zhang, Xiangjie Chen, Lei Wang, Guodong Yang 
Molecular Therapy - Methods & Clinical Development
Volume 16, Issue 6, Pages (August 2016)
Volume 5, Issue 4, Pages (October 2015)
Volume 10, Issue 4, Pages (April 2018)
Volume 59, Issue 5, Pages (September 2008)
Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells  David J. Tischfield, Junho Kim,
Volume 21, Issue 4, Pages (October 2017)
Volume 4, Issue 6, Pages (June 2015)
Lauren M. Tanabe, Chun-Chi Liang, William T. Dauer  Cell Reports 
Stéphanie Trouche, Jennifer M. Sasaki, Tiffany Tu, Leon G. Reijmers 
Volume 7, Pages (September 2018)
Volume 22, Issue 10, Pages (March 2018)
GRM7 Regulates Embryonic Neurogenesis via CREB and YAP
Volume 5, Issue 6, Pages (December 2015)
Todd E Anthony, Corinna Klein, Gord Fishell, Nathaniel Heintz  Neuron 
Volume 82, Issue 2, Pages (April 2014)
Volume 5, Issue 5, Pages (November 2015)
Xuepei Lei, Jianwei Jiao  Stem Cell Reports 
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
Volume 19, Issue 5, Pages (November 2016)
Volume 14, Issue 12, Pages (March 2016)
Microglia Modulate Wiring of the Embryonic Forebrain
Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1  Katelyn N. Benthall, Stacie L. Ong, Helen S.
Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System  Cédric G. Geoffroy, Brett J. Hilton, Wolfram.
Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia  Zhiqiang Dong, Nan Yang, Sang-Yeob.
Volume 12, Issue 12, Pages (September 2015)
Volume 11, Issue 11, Pages (June 2015)
Volume 80, Issue 5, Pages (December 2013)
Volume 22, Issue 7, Pages (February 2018)
Volume 9, Issue 6, Pages (December 2014)
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
Volume 11, Issue 6, Pages (December 2018)
Volume 93, Issue 4, Pages e3 (February 2017)
Volume 9, Issue 6, Pages (December 2014)
Volume 15, Issue 2, Pages (April 2016)
Cyclin D2 protein is expressed in the developing human cortex
Suppression of Ptf1a Activity Induces Acinar-to-Endocrine Conversion
Volume 26, Issue 1, Pages e6 (January 2019)
Using Notches to Track Mammary Epithelial Cell Homeostasis
Volume 25, Issue 6, Pages (March 2015)
Volume 26, Issue 2, Pages e3 (January 2019)
Yonghong Chen, Shujuan Zheng, Luis Tecedor, Beverly L. Davidson 
Presentation transcript:

Volume 13, Issue 6, Pages 1090-1095 (November 2015) Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate  Timothy J. Petros, Ronald S. Bultje, M. Elizabeth Ross, Gord Fishell, Stewart A. Anderson  Cell Reports  Volume 13, Issue 6, Pages 1090-1095 (November 2015) DOI: 10.1016/j.celrep.2015.09.079 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 13, 1090-1095DOI: (10.1016/j.celrep.2015.09.079) Copyright © 2015 The Authors Terms and Conditions

Figure 1 Genetic Strategy for Targeting MGE via In Utero Electroporation (A) Strategy to express Cre-dependent GFP into MGE progenitors via in utero electroporation (IUE) of Nkx2.1Cre embryos. (B) IUE of pCAG-LSL-IG + pCAG-mCherry results in GFP+ cells restricted to MGE progenitors (arrow) and MGE-derived cells migrating through the LGE. GFP+ cells are not observed in mCherry+ non-MGE cells (arrowheads). Scale bar, 50 μm. (C) At P21, embryos electroporated with pCAG-LSL-IG contain GFP+ cells in brain regions known to contain Nkx2.1-lineage cells. Str, striatum; Sep, septum; HC, hippocampus; Amyg, amygdala; Hyp, hypothalamus. Scale bar, 500 μm. (D) Putative GFP+ cortical SST+ Martinotti cell and PV+ basket cell. Scale bar, 50 μm. Cell Reports 2015 13, 1090-1095DOI: (10.1016/j.celrep.2015.09.079) Copyright © 2015 The Authors Terms and Conditions

Figure 2 pTα1-Expressing AP Progenitors Are Biased toward Generating SST+ Interneurons (A) Strategy to fate map pTα1+ AP progenitors via IUE into Nkx2.1Cre mice. (B) E12.5 IUE of pTα1-LSL-FlpO + pCAG-Frt-Stop-Frt(FSF)-GFP + pCAG-mCherry: GFP expression is restricted to the MGE and MGE-derived cells migrating into the cortex (arrows), whereas GFP is absent mCherry+ non-MGE-derived cells (arrowhead). Inset depicts higher-magnification view of GFP+/Cherry+ cells in the MGE SVZ/mantle region. Scale bars, 50 μm. (C) Representative images of P21 cortex from mice electroporated at E12.5 with pTα1-LSL-FlpO + pCAG-FSF-GFP or pNestin-LSL-FlpO + pCAG-FSF-GFP, with high-magnification images of individual cells depicting PV or SST expression. Scale bar, 50 and 10 μm. (D) pTα1+ MGE progenitors fate mapped at E12.5 display a strong bias to generate SST+ cortical interneurons at P21 compared to pNestin (pNes) fate-mapped cells. n = 4 brains for pTα1+ and 6 brains for pNes electroporations. Two-tailed t test, ∗∗∗p ≤ 0.001. Graphs depict average ± SEM. See also Figures S1–S3. Cell Reports 2015 13, 1090-1095DOI: (10.1016/j.celrep.2015.09.079) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Driving MGE Progenitors toward APs or BPs Enhances the Production of SST+ and PV+ Interneurons, Respectively (A) Representative images of P21 cortex from Nkx2.1Cre mice that were electroporated at E12.5 with pCAG-LSL-DNMAML-IG, pCAG-LSL-IG, or pCAG-LSL-Insc-IG, with high-magnification images of individual cells depicting PV or SST expression. Scale bars, 50 and 10 μm. (B) DNMAML expression biases cortical interneurons toward a SST+ fate, whereas Insc biases cortical interneurons toward a PV+ fate. ANOVA: F(2,31) = 14.9, p < 0.001, with Tukey’s HSD post hoc test; ∗p ≤ 0.05, ∗∗∗p ≤ 0.001. n = 12 brains for control and 11 brains for DNMAML and Insc conditions. (C) Our data support a model in which Tα1+ APs preferentially give rise to SST+ interneurons whereas CCND2+ BPs preferentially give rise to PV+ interneurons. Graphs depict average ± SEM. See also Figures S2 and S3. Cell Reports 2015 13, 1090-1095DOI: (10.1016/j.celrep.2015.09.079) Copyright © 2015 The Authors Terms and Conditions