Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid 

Slides:



Advertisements
Similar presentations
Volume 107, Issue 9, Pages (November 2014)
Advertisements

Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Analysis and Evaluation of Channel Models: Simulations of Alamethicin
Volume 109, Issue 7, Pages (October 2015)
Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
BamA POTRA Domain Interacts with a Native Lipid Membrane Surface
Vishwanath Jogini, Benoît Roux  Biophysical Journal 
Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly  Sang Ho Park, Francesca.
Conformational Changes of the Flavivirus E Glycoprotein
Alexander Vasin, Dina Volfson, J. Troy Littleton, Maria Bykhovskaia 
Volume 83, Issue 3, Pages (September 2002)
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Sonya M. Hanson, Simon Newstead, Kenton J. Swartz, Mark S.P. Sansom 
Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study
Armando J. de Jesus, Ormacinda R. White, Aaron D. Flynn, Hang Yin 
Structural and Dynamic Properties of the Human Prion Protein
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Theoretical and Computational Investigation of Flagellin Translocation and Bacterial Flagellum Growth  David E. Tanner, Wen Ma, Zhongzhou Chen, Klaus.
HyeongJun Kim, Jen Hsin, Yanxin Liu, Paul R. Selvin, Klaus Schulten 
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 103, Issue 5, Pages (September 2012)
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
Volume 107, Issue 6, Pages (September 2014)
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
Analysis and Evaluation of Channel Models: Simulations of Alamethicin
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Hongyu Zhang, Sophie E. Jackson  Biophysical Journal 
Volume 112, Issue 8, Pages (April 2017)
Volume 102, Issue 9, Pages (May 2012)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Volume 106, Issue 6, Pages (March 2014)
Firdaus Samsudin, Alister Boags, Thomas J. Piggot, Syma Khalid 
Volume 106, Issue 10, Pages (May 2014)
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Volume 107, Issue 5, Pages (September 2014)
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Volume 107, Issue 9, Pages (November 2014)
Volume 96, Issue 3, Pages (February 2009)
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Volume 113, Issue 1, Pages (July 2017)
Volume 111, Issue 1, Pages (July 2016)
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy  Daniel Mann, Udo Höweler, Carsten Kötting, Klaus.
Volume 111, Issue 1, Pages (July 2016)
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Volume 114, Issue 1, Pages (January 2018)
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Robust Driving Forces for Transmembrane Helix Packing
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
The Talin Dimer Structure Orientation Is Mechanically Regulated
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Volker Knecht, Helmut Grubmüller  Biophysical Journal 
Ana Caballero-Herrera, Lennart Nilsson  Biophysical Journal 
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
NMR Structures of the Second Transmembrane Domain of the Human Glycine Receptor α1 Subunit: Model of Pore Architecture and Channel Gating  Pei Tang, Pravat.
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Membrane Insertion of a Voltage Sensor Helix
Damian Dawidowski, David S. Cafiso  Structure 
Matthieu Chavent, Elena Seiradake, E. Yvonne Jones, Mark S.P. Sansom 
Volume 88, Issue 6, Pages (June 2005)
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 109, Issue 10, Pages (November 2015)
Volume 98, Issue 4, Pages (February 2010)
Volume 98, Issue 3, Pages (February 2010)
The NorM MATE Transporter from N
Presentation transcript:

A Highly Tilted Membrane Configuration for the Prefusion State of Synaptobrevin  Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid  Biophysical Journal  Volume 107, Issue 9, Pages 2112-2121 (November 2014) DOI: 10.1016/j.bpj.2014.09.013 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Synaptobrevin and the SNARE complex. (a) After membrane fusion occurs, synaptobrevin, which is located initially in the vesicle membrane, forms a helical bundle with syntaxin and SNAP25 in the cell membrane. (b) Synaptobrevin is composed of a cytosolic domain (residues 1–84), a so-called linker region (residues 85–94), and a transmembrane domain (residues 95–116). (c) Simulation system used to investigate the tilt of different regions of truncated synaptobrevin (residues 78–116) with respect to the membrane normal. Regions TM1 and TM2, respectively representing the N- and C-terminal halves of the synaptobrevin TM and linker regions, and the vectors used to characterize the tilt angles, are shown. The highly mobile membrane mimetic model (HMMM) (9) was employed to enable increased sampling of protein configurations. To see this figure in color, go online. Biophysical Journal 2014 107, 2112-2121DOI: (10.1016/j.bpj.2014.09.013) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Membrane-embedded synaptobrevin. (a) Initial conditions for simulations with wild-type synaptobrevin varied in both initial insertion depth and tilt. The simulations are labeled according to starting tilt with respect to the membrane normal. Initial tilts with the lysines in the linker region (residues 87, 91, and 94) angled toward the center of the membrane are denoted with a prime (′). (b) Running average of the tilt angle between TM1 and the membrane normal. The tilt angle converges after ∼30 ns. (c) Running average of the height of the tryptophan residues above the midpoint of the membrane. The distance below the phosphate layer of the membrane (dashed line) for the tryptophan residues converges to a value of ∼5 Å. (d) The highly tilted state resulting in all cases is characterized by lysine residues aligned along one side of the synaptobrevin helix and tryptophan residues inserted into the membrane on the other side of the helix. To see this figure in color, go online. Biophysical Journal 2014 107, 2112-2121DOI: (10.1016/j.bpj.2014.09.013) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 The glycine kink in the synaptobrevin TM domain. (a) Representative snapshots showing the kink of the synaptobrevin TM domain at G100. (b) Running average of the tilt angle between TM2 and the membrane normal, indicating high flexibility for the C-terminal half. To see this figure in color, go online. Biophysical Journal 2014 107, 2112-2121DOI: (10.1016/j.bpj.2014.09.013) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Additions to the synaptobrevin C-terminus. (a) Aminoacid sequence comparison of wild-type and mutants used in the simulations. (Blue box) Highly conserved WWKNLK motif. (b) Running average of the tilt angle between TM1 and the membrane normal. The plots converge to the wild-type value in ∼30 ns for all mutants. (c) Running average of the height of the tryptophan residues above the center of the membrane. The distance below the phosphate layer of the membrane for the tryptophan residues converges to a value of ∼5 Å. To see this figure in color, go online. Biophysical Journal 2014 107, 2112-2121DOI: (10.1016/j.bpj.2014.09.013) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Structure of synaptobrevin in a POPC membrane. (a) Plot of the TM1 angle of synaptobrevin as a function of simulation time. (Light red line) Average TM1 angle obtained across the five wild-type simulations of synaptobrevin in the PC HMMM. (b) Plot of the height of the tryptophans above the membrane center. (Light-brown line) Average height of the tryptophans above the membrane center in the five wild-type simulations of synaptobrevin in the PC HMMM. (c) Snapshot of synaptobrevin in a conventional POPC membrane demonstrating that the highly tilted state observed in the HMMM simulations is indeed stable in the full membrane simulations. (Red arrow) Helical axis used to measure the TM1 angle (corresponds to the red trace shown in panel a). Moreover, the coloring scheme applied to the POPC bilayer in this figure is carried over from Fig. 2 for ease of comparison. (d) Closeup of the TM1 showing the position of the WWKNLK motif as well as additional lysine residues. This arrangement mimics that found in HMMM simulations and shown in Fig. 2. To see this figure in color, go online. Biophysical Journal 2014 107, 2112-2121DOI: (10.1016/j.bpj.2014.09.013) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Conformation of membrane-embedded synaptobrevin. The membrane-embedded configuration is characterized by a highly tilted TM1 region, lysine residues aligned along a single face of the TM1 helix, and tryptophan residues inserted below the phosphate layer of the membrane. The TM2 helix is mechanically decoupled from TM1 by a kink at G100. The previously assigned linker region forms a continuous helix together with TM1 and is largely inserted into the membrane. To see this figure in color, go online. Biophysical Journal 2014 107, 2112-2121DOI: (10.1016/j.bpj.2014.09.013) Copyright © 2014 Biophysical Society Terms and Conditions