Volume 41, Issue 2, Pages e3 (April 2017)

Slides:



Advertisements
Similar presentations
Volume 38, Issue 2, Pages (July 2016)
Advertisements

Adhesion Disengagement Uncouples Intrinsic and Extrinsic Forces to Drive Cytokinesis in Epithelial Tissues  Charlène Guillot, Thomas Lecuit  Developmental.
Two Phases of Astral Microtubule Activity during Cytokinesis in C
Volume 14, Issue 1, Pages (January 2008)
Leslie Dunipace, Abbie Saunders, Hilary L. Ashe, Angelike Stathopoulos 
Volume 17, Issue 4, Pages (October 2009)
Volume 19, Issue 23, Pages (December 2009)
Myosin II Dynamics Are Regulated by Tension in Intercalating Cells
Lacy J. Barton, Belinda S. Pinto, Lori L. Wallrath, Pamela K. Geyer 
Wnt/β-Catenin and Fgf Signaling Control Collective Cell Migration by Restricting Chemokine Receptor Expression  Andy Aman, Tatjana Piotrowski  Developmental.
Paola Dal Santo, Mary A Logan, Andrew D Chisholm, Erik M Jorgensen 
Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux 
Transiently Reorganized Microtubules Are Essential for Zippering during Dorsal Closure in Drosophila melanogaster  Ferenc Jankovics, Damian Brunner  Developmental.
Yusuke Hara, Murat Shagirov, Yusuke Toyama  Current Biology 
Saikat Mukhopadhyay, Yun Lu, Shai Shaham, Piali Sengupta 
Muscle Building Developmental Cell
Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, Karen Oegema 
Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation  Gabrielle R. Barsh, Adam J. Isabella,
Volume 14, Issue 2, Pages (February 2008)
Yitao Ma, Dinara Shakiryanova, Irina Vardya, Sergey V Popov 
The Invading Anchor Cell Induces Lateral Membrane Constriction during Vulval Lumen Morphogenesis in C. elegans  Qiutan Yang, Daniel Roiz, Louisa Mereu,
Ksenia Smurova, Benjamin Podbilewicz  Cell Reports 
Volume 43, Issue 2, Pages e7 (October 2017)
The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans  Jennifer A Zallen, B.Alexander Yi,
Distinct Protein Domains and Expression Patterns Confer Divergent Axon Guidance Functions for Drosophila Robo Receptors  Bettina Spitzweck, Marko Brankatschk,
Fat2 and Lar Define a Basally Localized Planar Signaling System Controlling Collective Cell Migration  Kari Barlan, Maureen Cetera, Sally Horne-Badovinac 
Jianing Yu, David Ferster  Neuron 
Volume 43, Issue 4, Pages e4 (November 2017)
Volume 42, Issue 1, Pages (April 2004)
Volume 41, Issue 4, Pages e4 (May 2017)
Volume 18, Issue 4, Pages (April 2010)
Volume 43, Issue 4, Pages e4 (November 2017)
HBL-1 Patterns Synaptic Remodeling in C. elegans
Samuel A. LoCascio, Sylvain W. Lapan, Peter W. Reddien 
Boss/Sev Signaling from Germline to Soma Restricts Germline-Stem-Cell-Niche Formation in the Anterior Region of Drosophila Male Gonads  Yu Kitadate, Shuji.
Volume 7, Issue 6, Pages (December 2004)
Opposing Wnt Pathways Orient Cell Polarity during Organogenesis
Franziska Auer, Stavros Vagionitis, Tim Czopka  Current Biology 
Volume 74, Issue 2, Pages (April 2012)
Petra Haas, Darren Gilmour  Developmental Cell 
Katie S. Kindt, Gabriel Finch, Teresa Nicolson  Developmental Cell 
Volume 103, Issue 10, Pages (November 2012)
Volume 24, Issue 3, Pages (February 2013)
Stephanie C. Weber, Clifford P. Brangwynne  Current Biology 
The BMP Signaling Gradient Patterns Dorsoventral Tissues in a Temporally Progressive Manner along the Anteroposterior Axis  Jennifer A. Tucker, Keith.
Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion  Wesley B. Grueber, Bing Ye, Adrian W. Moore,
Propagation of Dachsous-Fat Planar Cell Polarity
Massimo A. Hilliard, Cornelia I. Bargmann  Developmental Cell 
Global Transcriptional Repression in C
Volume 18, Issue 4, Pages (April 2010)
Volume 10, Issue 3, Pages (March 2006)
Volume 43, Issue 4, Pages e10 (November 2017)
Volume 27, Issue 22, Pages e4 (November 2017)
Volume 80, Issue 6, Pages (December 2013)
Distinct Apical and Basolateral Mechanisms Drive Planar Cell Polarity-Dependent Convergent Extension of the Mouse Neural Plate  Margot Williams, Weiwei.
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
MAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin- Mediated Axon Repulsion  Xun Huang, Hwai-Jong Cheng, Marc Tessier-Lavigne,
Stefano De Renzis, J. Yu, R. Zinzen, Eric Wieschaus  Developmental Cell 
Yu-Chiun Wang, Zia Khan, Eric F. Wieschaus  Developmental Cell 
Cortical Flows Powered by Asymmetrical Contraction Transport PAR Proteins to Establish and Maintain Anterior-Posterior Polarity in the Early C. elegans.
The REF-1 Family of bHLH Transcription Factors Pattern C
Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia  Zhiqiang Dong, Nan Yang, Sang-Yeob.
Volume 22, Issue 16, Pages (August 2012)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Leo Otsuki, Andrea H. Brand  Developmental Cell 
Brent Neumann, Massimo A. Hilliard  Cell Reports 
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Volume 41, Issue 2, Pages 195-203.e3 (April 2017) PCP and SAX-3/Robo Pathways Cooperate to Regulate Convergent Extension-Based Nerve Cord Assembly in C. elegans  Pavak K. Shah, Matthew R. Tanner, Ismar Kovacevic, Aysha Rankin, Teagan E. Marshall, Nathaniel Noblett, Nhan Nguyen Tran, Tony Roenspies, Jeffrey Hung, Zheqian Chen, Cristina Slatculescu, Theodore J. Perkins, Zhirong Bao, Antonio Colavita  Developmental Cell  Volume 41, Issue 2, Pages 195-203.e3 (April 2017) DOI: 10.1016/j.devcel.2017.03.024 Copyright © 2017 Elsevier Inc. Terms and Conditions

Developmental Cell 2017 41, 195-203. e3DOI: (10. 1016/j. devcel. 2017 Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Convergent Extension of the Ventral Nerve Cord (A) Maximum projections of C. elegans embryos expressing cnd-1p::PH::RFP. Red contours outline the embryo. White dashed box marks the VNC. Scale bar, 10 μm. (B) Single slices showing three distinct rosettes observed during CE in the VNC. White arrow points to the vertex of the most anterior rosette in which only three cells are labeled. Red dashed boundary outlines the rosettes. Accompanying schematics and color key identify the specific neurons in each rosette as well as those which arise from the right (R) and left (L) lineages. Asterisk marks RIGL. The color scheme is used in the rosette schematics and 3D reconstructions. Scale bar, 5 μm. (C) Example assembly and resolution dynamics of the central rosette identified in (B) imaged in a different embryo. Dashed circle outlines the rosette. In the corresponding schematics magenta lines mark shrinking cell-cell contacts and cyan marks newly formed cell contacts. Colored circles identify each cell according to the legend provided in (B). Scale bar, 5 μm. (D) 3D reconstruction of DA and DD neurons (same color scheme as in panel B) during rosette resolution (0′–6′) and subsequent single-cell intercalations beginning with DD3 (9′–19.5′). White arrowheads point to intercalating cells. (E) 3D reconstruction showing final linear configuration of DA and DD neurons in the VNC prior to the onset of twitching; color scheme as in (B). Developmental Cell 2017 41, 195-203.e3DOI: (10.1016/j.devcel.2017.03.024) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 PCP Genes and sax-3 Act in Parallel Genetic Pathways to Regulate Neuron Position in the Ventral Nerve Cord (A) Schematic of DD, DA, and DB neuron positions in the ventral nerve cord (VNC), retrovesicular ganglion (RVG), and preanal ganglion (PAG). (B–E) Representative images of L1 stage DD1–6 (arrowheads) in wt and mutant backgrounds labeled with a ynIs37[flp-13p::gfp] reporter. (F) Quantification of DD2–4 positions relative to DD1 in L1 stage wt and mutant worms. Neurons (color coded as indicated along the top) are plotted along the anterior-posterior (AP) axis where DD1 marks the 0% AP position and the anus is the 100% AP position. Means and 95% confidence intervals are shown for each DD neuron with DD2–6 neurons in mutants compared with the corresponding wt neuron (n = 40–53 worms). ∗∗p ≤ 0.001 using the two-tailed t test. (G–J) Representative images of L4 stage DD (green arrowheads) and DA/DB (red arrowheads) neurons in wt and mutant backgrounds visualized with a zyIs27[flp-13p::gfp unc-129p::mCherry] reporter. (K and L) Representative images of L1 stage DD (green arrowheads) and DA/DB (red arrowheads) neurons in wt and sax-3(zy5); prkl-1(ok3182) double mutant visualized with zyIs27. (M and N) Representative fluorescent and Nomarski images of L1 stage nervous system in wt and vang-1(ok1142) sax-3(zy5) double mutant visualized with the pan-neuronal otIs173[rgef-1p::mCherry] reporter. Bracket indicates region in double mutant devoid of neuronal cell bodies. All scale bars, 50 μm. Developmental Cell 2017 41, 195-203.e3DOI: (10.1016/j.devcel.2017.03.024) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 Localization of PCP Components, SAX-3/ROBO, and NMY-2 during Rosette Assembly (A–C) Neuronal but not epidermal-specific expression of (A) vang-1, (B) prkl-1, and (C) sax-3 rescue the anterior displacement of DD neurons in the corresponding mutant backgrounds. DD neuron quantification and color scheme is as described in Figure 2F. Each DD2–6 neuron in transgenic worms (TG+) are compared with their corresponding neuron in non-transgenic (TG−) siblings. Means and 95% confidence intervals are shown for each DD neuron. ∗∗p ≤ 0.001, using the two-tailed t test (n = 44–62 worms). (D–G) Partial maximum projections of volumes acquired of embryos expressing the cnd-1 membrane label and functional GFP fusions with (D) PRKL-1 (zyIs33), (E) VANG-1 (zy60), (F) NMY-2 (cp13), and (G) SAX-3 (zyIs43) during rosette formation. Dashed ovals in early time point mark a contracting cell contact; dashed circles at later time point mark the resulting rosette vertex. (H) Enrichment of VANG-1::GFP and NMY-2::GFP at the contracting cell-cell contact during rosette assembly relative to mean GFP levels at non-contracting cell contacts (n = 3). (I) Enrichment of VANG-1::GFP and NMY-2::GFP at the rosette center after rosette formation relative to mean GFP levels at the pairwise cell contacts between all cells in the rosette (n = 3). Error bars show SE. Scale bars, 5 μm (D) and 2 μm (E–G). Developmental Cell 2017 41, 195-203.e3DOI: (10.1016/j.devcel.2017.03.024) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 Phenotypes of vang-1, prkl-1, and sax-3/Robo Mutants in Rosette Resolution and Orienting Cell Intercalation (A) Maximum projections and 3D reconstructions showing the embryonic VNC in representative wt and mutant embryos expressing cnd-1p::PH::RFP at the 1.5-fold stage. White arrowheads highlight ectopic cell contacts not observed in the wt at this stage. Color key used is the same as in Figure 2. Scale bar, 5 μm. (B) Schematic highlighting the location of expanded views (dashed box) showing a stereotyped neighbor exchange between posterior DA and DD neurons in wt and mutant embryos expressing cnd-1p::PH::RFP. Red dot marks DA5, blue dot marks DD4, and purple dot marks DD6. Red arrows point to the contraction of the posterior edge of DD4 and white arrows point to the contraction of the anterior edge of DD4. Schematics illustrate the corresponding wt and mutant behaviors. (C) Frequency with which the anterior edge of DD3/4 was observed to contract in wt and mutants. (D) Relative enrichment of VANG-1::GFP at the posterior edge of DD3/4 versus the anterior edge of DD3/4 in embryos immediately prior to contraction as in (B) in wt (n = 5) and prkl-1(ok3182) (n = 4) embryos. Error bars show SE. (E) Examples of varied rosette resolution dynamics observed in wt, vang-1(ok1142), prkl-1(ok3182), sax-3(zy5), and sax-3(zy5);prkl-1(ok3182) embryos expressing cnd-1p::PH::RFP. Red dashed line outlines the cells participating in the rosette. (F) Box-and-whisker plots showing the distribution of observed rosette lifetimes in wt (n = 7), vang-1(ok1142) (n = 9), prkl-1(ok3182) (n = 10), sax-3(zy5) (n = 5), and sax-3(zy5);prkl-1(ok3182) (n = 4) embryos. Red line marks the median, and whiskers encompass 0–100% of range. Developmental Cell 2017 41, 195-203.e3DOI: (10.1016/j.devcel.2017.03.024) Copyright © 2017 Elsevier Inc. Terms and Conditions