Global Climatology of Aerosol Optical Depth

Slides:



Advertisements
Similar presentations
Time series of satellite-based fine particulate matter (PM 2.5 ) concentrations over China: Guannan Geng, Qiang Zhang, Aaron van Donkelaar, Randall.
Advertisements

Mapping Surface NO 2 and PM 2.5 from Satellite Observations Randall Martin, Dalhousie University with contributions from Aaron van Donkelaar, Dalhousie.
Simulation of Absorbing Aerosol Index & Understanding the Relation of NO 2 Column Retrievals with Ground-based Monitors Randall Martin (Dalhousie, Harvard-Smithsonian)
Junwei Xu 1 Randall V. Martin 1,2, Jhoon Kim 3, Myungje Choi 3, Qiang Zhang 4, Guannan Geng 4, Yang Liu 5, Zongwei Ma 5,6, Lei Huang 6, Yuxuan Wang 4,7.
Time Series Analysis of Satellite-Derived PM 2.5 Brian Boys, Randall V. Martin, Aaron van Donkelaar, Ryan MacDonell, Nai-Yung C. Hsu * NASA/Goddard Space.
Quantitative Interpretation of Satellite and Surface Measurements of Aerosols over North America Aaron van Donkelaar M.Sc. Defense December, 2005.
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Satellite Remote Sensing of a Multipollutant Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal,
Calculating AODs from MODIS radiances Easan Drury G4 - w/ Jacob Harvard July 22, 2004 July 3, 2004.
Satellite-based Global Estimate of Ground-level Fine Particulate Matter Concentrations Aaron van Donkelaar1, Randall Martin1,2, Lok Lamsal1, Chulkyu Lee1.
Aerosol Simulation Over North America Aaron Van Donkelaar April 2005.
1 Surface nitrogen dioxide concentrations inferred from Ozone Monitoring Instrument (OMI) rd GEOS-Chem USERS ` MEETING, Harvard University.
Estimating global climatological PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin April 2009.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
Aircraft spiral on July 20, 2011 at 14 UTC Validation of GOES-R ABI Surface PM2.5 Concentrations using AIRNOW and Aircraft Data Shobha Kondragunta (NOAA),
Satellite Remote Sensing of Global Air Pollution
Application of Satellite Data to Particulate, Smoke and Dust Monitoring Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality.
Developing a High Spatial Resolution Aerosol Optical Depth Product Using MODIS Data to Evaluate Aerosol During Large Wildfire Events STI-5701 Jennifer.
Insight from the A-Train into Global Air Quality Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Akhila Padmanabhan,
1 AOD to PM2.5 to AQC – An excel sheet exercise ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan Gupta Salt.
Applications of Satellite Remote Sensing to Inform Air Quality Management Randall Martin with contributions from Aaron van Donkelaar, Brian Boys, Matthew.
Satellite Observations of Tropospheric Gases and Aerosols Randall Martin With contributions from: Rongming Hu (Dalhousie University) Chris Sioris, Xiong.
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
Insight into Global Air Quality using Satellite Remote Sensing and Modeling Randall Martin with contributions from Aaron van Donkelaar, Shailesh Kharol,
Advances in Applying Satellite Remote Sensing to the AQHI Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Akhila Padmanabhan, Dalhousie.
Applications of Satellite Remote Sensing to Estimate Global Ambient Fine Particulate Matter Concentrations Randall Martin, Dalhousie and Harvard-Smithsonian.
Using Satellite Remote Sensing to Estimate Global Outdoor Air Pollution Exposure Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar,
Overview of Case Studies of VIIRS Aerosol Products for Operational Applications Amy Huff Pennsylvania State University VIIRS Aerosol Science and Operational.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Space-based Constraints on Global SO 2 Emissions and Timely Updates for NO x Inventories Randall Martin, Dalhousie and Harvard-Smithsonian Chulkyu Lee,
Rong-Ming Hu and Randall Martin Inspiring Minds. Retrieval of Aerosol Single Scattering Albedo (SSA)  Determined with radiative transfer calculation.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Satellite Remote Sensing of NO 2 as an Indicator of Aerosol Pollution: Opportunities from GEMS (and GOCI) Observations Randall Martin with contributions.
Improving MISR-retrieved Aerosol Properties Using GOCART Simulations Yang Liu, PhD June 3, 2015 St. Louis, MO.
Improving Retrievals of Tropospheric NO 2 Randall Martin, Dalhousie and Harvard-Smithsonian Lok Lamsal, Gray O’Byrne, Aaron van Donkelaar, Dalhousie Ed.
Estimating PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin March 2009.
J31 Data Workshop 9-10Mar05 Validation of Satellite Aerosol Optical Depth by AATS-14 during ICARTT 2004 NASA Ames Airborne Sunphotometer Team Presented.
NGAC verification NGAC verification is comparing NGAC forecast (current AOT only) with observations from ground-based and satellite measurements and with.
Some Applications of Satellite Remote Sensing for Air Quality: Implications for a Geostationary Constellation Randall Martin, Dalhousie and Harvard-Smithsonian.
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Yang Liu +, Ralph Kahn #, Solene Turquety *, Robert M Yantosca ++, and Petros Koutrakis + + Harvard School of Public Health, Boston, MA; # Jet Propulsion.
Intercomparison of satellite retrieved aerosol optical depth over ocean G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev,
NOAA GOES-R Air Quality Proving Ground March 25, 2011 Case Study Smoke in Southeastern U.S.
Redemann, ICARTT J-31 data workshop, Boulder, CO, Mar. 9-10, 2005 Aerosol horizontal structure – variability Jens Redemann (BAER Institute) + J-31 team.
Pushing the limits of dark-target aerosol remote sensing from MODIS Robert C. Levy (SSAI and 613.2) Contributors: S. Mattoo (SSAI), L. Remer (NASA), R.
Observing Air Quality from Space Randall Martin, Aaron van Donkelaar, Lok Lamsal, Chulkyu Lee, Carolyn Verduzco Undergraduate Science Conference 25 September.
Satellite Remote Sensing of the Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Dalhousie University.
Global Air Pollution Inferred from Satellite Remote Sensing Randall Martin, Dalhousie and Harvard-Smithsonian with contributions from Aaron van Donkelaar,
Introduction To Remote Sensing for Air Quality Application ARSET - AQ Applied Remote SEnsing Training – Air Quality A project of NASA Applied Sciences.
MPI-Meteorology Hamburg, Germany Evaluation of year 2004 monthly GlobAER aerosol products Stefan Kinne.
sun- (/sky-) photometer ground-networks
NOAA GOES-R Air Quality Proving Ground Case Study 2 May 24, 2007
Randall Martin, Dalhousie and Harvard-Smithsonian
Presentation by: Dan Goldberg1
Aerosol Simulation Over North America
Satellite Remote Sensing of a Multipollutant Air Quality Health Index
Estimating PM2.5 using MODIS and GOES aerosol optical depth retrievals in IDEA Hai Zhang , Raymond M. Hoff1 , Shobha Kondragunta2.
Randall Martin Aaron Van Donkelaar Daniel Jacob Dorian Abbot
G. Myhre, F. Stordal, M. Johnsrud, A. Ignatov, M. I. Mishchenko, I. V
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Estimating Ground-level NO2 Concentrations from OMI Observations
Bryan Duncan (PI) & Lok Lamsal (Co-I)
with contributions (alphabetical) from
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Satellite Remote Sensing of Ground-Level NO2 for New Brunswick
NOAA GOES-R Air Quality Proving Ground July 4, 2012 Case Study
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar1, Randall Martin1,2,
Chris Sioris Kelly Chance
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Presentation transcript:

Global Climatology of Aerosol Optical Depth Aaron van Donkelaar, Randall V. Martin: Dalhousie University Ralph Kahn, Robert Levy: NASA Goddard CAFC Meeting 1 February 2010

Average Aerosol Optical Depth (τ) Mean τ 2001-2006 at 0.1º x 0.1º MODIS τ 1-2 days for global coverage Requires assumptions about surface reflectivity MODIS MISR τ 6-9 days for global coverage Simultaneous surface reflectance and aerosol retrieval MISR τ [unitless] 0 0.1 0.2 0.3

Exclude Retrievals Where Bias > 0.1 or 20% July MODIS MISR 9 surface types, defined by monthly mean surface albedo ratios, evaluation against AERONET AOD

Ground-Based PM2.5 Data Useful for Indirect AOD Validation Annual Mean PM2.5 (2001-2006) PM2.5 [μg/m3]

Combining MODIS & MISR Improves Agreement 0.3 0.25 0.2 0.15 0.1 0.05 Combined MODIS/MISR r = 0.63 (vs. in-situ PM2.5) τ [unitless] MODIS r = 0.40 (vs. in-situ PM2.5) MISR r = 0.54 (vs. in-situ PM2.5) r=0.45 for a simple average

Mean AOD (2001-2006) from MODIS and MISR Spatial comparison vs AERONET coincident: r=0.97, slope=1.02, 226 sites non-coincident: r=0.75, slope=0.91, 258 sites