CH3Br Negative particle detections; Electrons /PES:

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
Physics 6C De Broglie Wavelength Uncertainty Principle Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Physics 6C De Broglie Wavelength Uncertainty Principle Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Physics 6C Heisenberg Uncertainty Principle Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Spectroscopy The Light Spectrum. Vibrational Spectroscopy D(t) r(t) Band structure The higher the BO: i) the deeper the Well, ii) the wider the spacing.
Mass Spectrometry Introduction:
CH3Br, Relative ion signals (I(M + )/I(CH 3 + )) vs Rydberg states agust,www,....Nov09/PPT ak.ppt agust,heima,...CH3Br-Overall +mass km ak.pxp.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
HBr, F 1  2, v´=1
CH3Br, HBr detection agust, www,...Sept09/PPT ak.ppt.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
CH3Br, )PD summary status 2)Thresholds for direct excitations 3)CH3+ formation energetics / thresholds (direct and indirect)/ PD agust, heima,.....Dec09/CH3Br-Overall.
Things to address in our CH 3 Br studies / publication(s) Main reference is T. Ridley et al., JPC A, 112, 7170, (2008):
CH 2 Br 2 agust,www,...rempi/ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jl ak.pxp.
CF3Br agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp.
1 CH3Br, C, C* and C** dissociation formation channels vs C+ spectra Explanation for enhanced C+ Rydberg state spectra in the cm-1.
1 CH3Br, agust, heima,....Sept09/XLS ak.xls agust, www,....Sept09/PPT ak.ppt agust,heima,....Sept09/C ion lines vhw.pxp.
CH3Br agust,www,...Sept09/PPt ak.ppt agust,heima,....Sept09/CH3BR avhwak.pxp agust,heima,....Sept09/CH3BR bvhwak.pxp.
1 Report on analysis of PoGO Beam Test at Spring-8 Tsunefumi Mizuno July 15, 2003.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Wbt1 Chapter 10. REMPI, ZEKE, and MATI Spectroscopies Resonance-enhanced multiphoton ionization (REMPI) spectroscopy involves more than one photons in.
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
HBr, E(0), KERs and relative intensities revisited: Content:pages: KER spectra and „channel.
HCl, E(v´=2) agust,www,…..hcl/June11/PPT ak.ppt agust,heima,…HCl/June11/HCl E2 spectra jl.pxp agust,heima,…HCl/June11/HCl E2 spectra jlaka.pxp.
Measurement of J/  -> e + e - and  C -> J/  +   in dAu collisions at PHENIX/RHIC A. Lebedev, ISU 1 Fall 2003 DNP Meeting Alexandre Lebedev, Iowa State.
Eirík´s project(?) CH 3 I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
atomic excitation and ionisation
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
Problem Solving hints Use white AP constant sheet hc = 1.99  J  m = 1.24  10 3 eV  nm h = 6.63  J  s = 4.14  eV  s 1 eV =
SOC Camera Performance Systematic Assessment Jin Wu 11/20/2013.
Line Spectra When the particles in the solid, liquid, or gas accelerate, they will produce EM waves. Electron orbit to orbit transitions in atoms (gasses)
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3Br, (2+n)REMPI spectra assignments for region – cm-1
Chem. 133 – 3/9 Lecture.
Dissociation of Molecular Ions Studied by
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Early models to Quantum Model
CH3I VMI-REMPI data and analysis:
The Atom (Chapter 9)
HBr, Angular distributions for V(m+i), i = 4-10; J´
Interaction of p orbitals in polyenes at the Huckel level of theory
Mass Spectrometry.
The Bohr Model of the Atom
Chemistry 141 Monday, October 30, 2017 Lecture 23 Light and Matter
Updated (p:15-16, refs. & p:50-51)
CH3I summary This file includes some ideas about dissociation of
Basic Physics Processes in a Sodium Iodide (NaI) Calorimeter
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
Content: - Comparison of CH3 and CH2 KER - KER assignment for the two color experiment dissociation at 270 nm and probing of CH3 at nm (211 transition)
H(0), one-color, VMI and slicing images
Ch 7 Notes Atomic Structure
HBr, 3S-, J´= 8 & V(m+9) Updated:
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
Bohr, Emissions, and Spectra
CH3I summary This file includes some ideas about dissociation of
CH3I VMI-REMPI data and analysis:
1hv spectrum corrected/shifted
CH3Br; old data agust,www,...ch3br/PPT aak.ppt
KER predictions for Br+ images
Electron Transfer in cluster Anions:
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Arrangement of Electrons
Presentation transcript:

CH3Br Negative particle detections; https://notendur.hi.is/~agust/rannsoknir/Crete16/PPT-161014-CH3Br(4).pptx  Electrons /PES: KERs………………………………………………………………………………….. 2,4-9 images………………………………………………………………………………. 3,10-11 Normalized KERs………………………………………………………………. 12-18 PES due to 1hv ion formation channels (predictions)…….. 13-15 & 22 PES due to 3hv ion formation channel (predictions)…….. 16-17, 23 Effect of space charge (negligible)…………………………………. 5,9 Threshold due to Br- + hv -> Br + e-……………………………… 24 Updated 180813

Negative particles pix Ry(2hv/cm-1): 68684(14.10.16) 67275(14.10.16)) 66503(14.10.16) 66019 (14.10.16) pix https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:0, Lay:0

66019 (14.10.16) 66503(14.10.16) 67275(14.10.16)) 68684(14.10.16)

e- KERs eV Ry(2hv/cm-1): 68684(291.231 nm; 13.10.16) https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:1, Lay:1

e- KERs eV Ry(2hv/cm-1): 72973(274.114 nm; 14.10.16) 72973(274.114 nm; 26.10.17) minimum space charge effect eV = 4.59e-5*(pix)2 eV = 3.181e-5*(pix)2 eV https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Lay3;Gr3

e- KERs 5kV; eV = 4.58652 x 10-5 (pix)2 Off sets To top 5kV; eV = 4.58652 x 10-5 (pix)2 Off sets CH3+ +Br- Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) 78339(255.300 nm; 14.10.16) 77165(259.232 nm; 14.10.16) 75905(263.527 nm; 14.10.16) 74249(269.394 nm; 14.10.16) 72973(274.114 nm; 14.10.16) 68684(291.231 nm; 13.10.16) 67275(297.324 nm; 13.10.16) 66503(300.813 nm; 13.10.16) 66019(303.000 nm; 13.10.16) 3kV; eV = 2.95432 x 10-5 (pix)2 eV https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:2, Lay:2

e- KERs Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) 78339(255.300 nm; 14.10.16) 77165(259.232 nm; 14.10.16) 75905(263.527 nm; 14.10.16) 74249(269.394 nm; 14.10.16) 72973(274.114 nm; 14.10.16) 68684(291.231 nm; 13.10.16) 67275(297.324 nm; 13.10.16) 66503(300.813 nm; 13.10.16) 66019(303.000 nm; 13.10.16) 5kV; eV = 4.58652 x 10-5 (pix)2 3kV; eV = 2.95432 x 10-5 (pix)2 eV https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:2, Lay:2

e- KERs /PES spectra stacked as a function of two-photon excitation wavenumber: To top Ry(2hv/cm-1): 79610 78339 77165 75905 74249 72973 68684) 67275 66503 66019 Energy scale CH3+ +Br- eV https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:2, Lay:2

e- KERs /PES spectra stacked as a function of two-photon excitation wavenumber: To top Ry(2hv/cm-1): 79610 78339 77165 75905 74249 72973 68684) 67275 66503 66019 26.10.17 Energy scale 14.10.16 CH3+ +Br- eV https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:2, Lay:2

Is this real or is this the edge of the detector? To top 72973(274.114 nm; 14.10.16) 74249(269.394 nm; 14.10.16) 75905(263.527 nm; 14.10.16) Is this real or is this the edge of the detector? NB: Big „black holes“ we might be loosing some low energy el signals(?) https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:2, Lay:2

To top 77165(259.232 nm; 14.10.16) 78339(255.300 nm; 14.10.16) 79610 (251.300 nm; 14.10.16) https://notendur.hi.is/~agust/rannsoknir/Crete16/PXP-161014.pxp; Gr:2, Lay:2

PES spectra normalized to threshold energies (x-axis) on a DE scale for DE = 0 for the 66019 cm-1 2hv Rydberg excitation for 1hv excitation:

3Dhn eV CH3+ +Br- Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) https://notendur.hi.is/~agust/rannsoknir/Crete16/Electron_KER_CH3_focus-170727.pxp; Lay:0; Gr:15 https://notendur.hi.is/~agust/rannsoknir/Crete16/XLS-160912.xlsx sheet: Waves

* * 3Dhn eV CH3+ +Br- Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) https://notendur.hi.is/~agust/rannsoknir/Crete16/Electron_KER_CH3_focus-170727.pxp; Lay:0; Gr:15 https://notendur.hi.is/~agust/rannsoknir/Crete16/XLS-160912.xlsx sheet: Waves

Dhn eV CH3+ +Br- Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) https://notendur.hi.is/~agust/rannsoknir/Crete16/Electron_KER_CH3_focus-170727.pxp; Lay:1; Gr:13

Forming CH3 in ground state Then 3 hv photon ionization PES for 77165 cm-1 Red lines indicate 3 hv transitions between vibrational states of the CH3 fragment Forming CH3 in ground state Then 3 hv photon ionization Electron_KER_CH3_focus2.pxp : gr 15; From: Dropbox/REMPI/From Arnar/CH3Br/Crete 2016/Revisit_77165_CH3_and_PES.pptx; slide 2

Electron_KER_CH3_focus2.pxp : gr 15 dE v1 CH stretch 3004.43 -3004.43 v2 OPLA 1359 606.453 752.547 v3 3108.38 3160.821 -52.441 v4 Deformation 1370 1401.6 -31.6 77165 2 hv (0,0,0,0) 36381.5 cm-1 4.510787 eV (1,0,0,0) 39385.93 4.883294 (0,1,0,0) 35628.95 4.417482 (0,0,1,0) 36433.94 4.517289 (0,0,0,1) 36413.1 4.514705 (0,2,0,0) 34876.41 4.324177 (0,3,0,0) 34123.86 4.230872 (0,4,0,0) 33371.31 4.137567 (0,5,0,0) 32618.77 4.044262 CH3 (0,0,1,0) + 3hn -> CH3+(0,0,1,0) + e- (CH str.) CH3 (0,0,0,1) + 3hn -> CH3+(0,0,0,1) + e- (def.) CH3 (0,0,0,0) + 3hn -> CH3+(0,0,0,0) + e- (n0) CH3 (0,5,0,0) + 3hn -> CH3+(0,5,0,0) + e-; OPLA CH3 (0,4,0,0) + 3hn -> CH3+(0,4,0,0) + e-; OPLA CH3 (0,3,0,0) + 3hn -> CH3+(0,3,0,0) + e-; OPLA CH3 (0,2,0,0) + 3hn -> CH3+(0,2,0,0) + e-; OPLA CH3 (0,1,0,0) + 3hn -> CH3+(0,1,0,0) + e-; OPLA CH3 (1,0,0,0) + 3hn -> CH3+(0,0,0,0) + e- Electron_KER_CH3_focus2.pxp : gr 15 From: Dropbox/REMPI/From Arnar/CH3Br/Crete 2016/Revisit_77165_CH3_and_PES.pptx; slide 3

D(nhv) comparison D(1hv) D(3hv)

Thresholds for CH3**(i) + 1hv -> CH3+ + e: PES: Thresholds for CH3**(i) + 1hv -> CH3+ + e: CH3+ +Br- Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) 78339(255.300 nm; 14.10.16) 77165(259.232 nm; 14.10.16) 75905(263.527 nm; 14.10.16) 74249(269.394 nm; 14.10.16) 72973(274.114 nm; 14.10.16) 68684(291.231 nm; 13.10.16) 67275(297.324 nm; 13.10.16) 66503(300.813 nm; 13.10.16) 66019(303.000 nm; 13.10.16) eV D(1hn) https://notendur.hi.is/~agust/rannsoknir/Crete16/XLS-171001-CH3Br.xlsx; sheet: Predictions-s https://notendur.hi.is/~agust/rannsoknir/Crete16/Electron_KER_CH3_focus-170727.pxp; Lay:2; Gr:16

CH3I(X) + 3hv -> CH3I(3/2,1/2)+ + e PES: Thresholds for CH3I(X) + 3hv -> CH3I(3/2,1/2)+ + e PES: CH3+ +Br- No clear common peaks Corresponding to the channels CH3I(X) + 3hv -> CH3I(3/2,1/2)+ + e Ry(2hv/cm-1): 79610 (251.300 nm; 14.10.16) 78339(255.300 nm; 14.10.16) 77165(259.232 nm; 14.10.16) 75905(263.527 nm; 14.10.16) 74249(269.394 nm; 14.10.16) 72973(274.114 nm; 14.10.16) 68684(291.231 nm; 13.10.16) 67275(297.324 nm; 13.10.16) 66503(300.813 nm; 13.10.16) 66019(303.000 nm; 13.10.16) D(3hn) eV https://notendur.hi.is/~agust/rannsoknir/Crete16/XLS-171001-CH3Br.xlsx; sheet: Predictions-s https://notendur.hi.is/~agust/rannsoknir/Crete16/Electron_KER_CH3_focus-170727.pxp; Lay:3; Gr:17 https://notendur.hi.is/~agust/rannsoknir/Crete16/XLS-160912.xlsx sheet: Waves

PES D = E(1hv) - Eea 𝐵𝑟 − →𝐵𝑟+ 𝑒 − 10 9 8 7 6 5 4 3 2 1 𝐵𝑟 − →𝐵𝑟+ 𝑒 − 10 D = E(1hv) - Eea 9 8 7 6 5 4 3 2 1 \Dropbox\...\Arnar\CH3Br\Crete 2016\Electron_KER_new_eV_scale.pxp