The optimal control of musculoskeletal model by genetic algorithm Presented by Soroush Bagheri Koudakani
Introduction Human Movement Modeling The optimal control theory Classical Non-classical Advantage & Disadvantage Continuation & Differentiable function Obstructive possibility Accuracy
Introduction Parameter optimization algorithm (Pandy 1992) Computed Muscle Control (CMC) PD controller * Genetic Algorithm
Method Musculoskeletal model Skeletal model Constrain Muscles model Excitation to Activation
Muscle Excitation Generator Genetic Algorithm Chromosome Population Selection Mutation
Vertical jump simulation
Result The validity of muscle excitation algorithm After 26 Iterations
Result Iteration Height of COM (Cm) 60 98.047 450 101.016 533 121.679
Conclusion
THANK YOU FOR YOUR ATTENTION Soroush Bagheri Koudakani
Skeletal Model 1 : Calcaneus 2 : Talus 3 : Knee 4 : Hip 5 : Pelvis 5 4 G 1 2 4 5 3 1 : Calcaneus 2 : Talus 3 : Knee 4 : Hip 5 : Pelvis
Contrain Foot-Ground Anderson 1999
Muscle model Thanlen 2003
Moment Arm
Excitation - Activation Zajac1989 Thalen2003