Searching for photons in the LAT

Slides:



Advertisements
Similar presentations
CU Beamtest Workshop III, June 28-30, 2006 C. Cecchi – S. Germani – M. Pepe Offline Monitor for CU Beam Test Claudia Cecchi Stefano Germani Monica Pepe.
Advertisements

Update on Beamtest 06 CU PSF study C. Cecchi S. Germani M. Pepe Università di Perugia and INFN Gamma-ray Large Area Space Telescope Beam Test Worksop II.
STAR Status of J/  Trigger Simulations for d+Au Running Trigger Board Meeting Dec5, 2002 MC & TU.
Barbara Sciascia – LNF 1 K  semileptonic BR measurement B. Sciascia 4 may 2006 KpmKSL joint meeting.
Gamma-ray Large Area Space Telescope Understanding SVAC CalMip Variables Monica Pepe Stefano Germani INFN Perugia Instrument Analysis Meeting December.
GLAST LAT ProjectIA Workshop 6 – Feb28,2006 Preliminary Studies on the dependence of Arrival Time distributions in the LAT using CAL Low Energy Trigger.
SVAC/ISOCInstrument Analysis Workshop, February 27, 2006 Anders W. Borgland 1 Overview Of LAT Data Taking Anders W. Borgland Science Verification, Analysis.
Analysis Meeting 26 Sept 05T. Burnett1 UW classification: background rejection (A summary – details at a future meeting)
Bill Atwood, SCIPP/UCSC, Apr. 3, 2006 GLAST 1 Pass 4 and Preparing for the LAT Handoff to NASA Why we can't go with the DC2 Analysis (Pass 3) 1) Background.
Top Turns Ten March 2 nd, Measurement of the Top Quark Mass The Low Bias Template Method using Lepton + jets events Kevin Black, Meenakshi Narain.
Bill Atwood, SCIPP/UCSC, Jan. 30, 2006 GLAST 1 Closer to Reality From Last Talk ( 7-Jan-06) – things seemed Great! However... 1) In estimating the SRD.
Bill Atwood, SCIPP/UCSC, Oct, 2005 GLAST 1 DC2 Discussion – What Next? 1)Alternatives - Bill's IM analysis - ???? 2)Backing the IM Analysis into Gleam.
T. Burnett: IRF status 30-Jan-061 DC2 IRF Status Meeting agenda, references at:
Bill Atwood, SCIPP/UCSC, Dec., 2003 GLAST 1 DC1 Instrument Response Agenda Where are we? V3R3P7 Classification Trees Covariance Scaled PSF Pair Energies.
GLAST LAT Project July 19, 2005 E. do Couto e Silva 1/17 Science Verification Analysis and Calibration GLAST Large Area Telescope Eduardo do Couto e Silva.
1 May 27, 2005 Comparison tower A data and Montecarlo OVERVIEW Comparison of MC (EM- v 4r060302p18 ) and tower A data using the “baseline” run (Run )
Bill Atwood, SCIPP/UCSC, Dec., 2003 GLAST ALL GAMMAs using the New Recons First runs of ALL GAMMA – from glast-ts and SLAC Unix farm glast-ts sample: no.
Onboard Filter Update Performance after updated cuts David Wren 26 January 2004.
Residual Background events after Rejection Cuts M total background events (GlastReleasev3r3p7) 344 residual events after Bill's rejection cuts. 342.
Bill Atwood, SCIPP/UCSC, Jan. 30, 2006 GLAST 1 Post Processing & Pass4 The time for DC2 is drawing to a close. However we're still only part ways up the.
1 Using Insightful Miner Trees for Glast Analysis Toby Burnett Analysis Meeting 2 June 2003.
In order to acquire the full physics potential of the LHC, the ATLAS electromagnetic calorimeter must be able to efficiently identify photons and electrons.
Bill Atwood, SCIPP/UCSC, DC2 Closeout, May 31, 2006 GLAST 1 Bill Atwood & Friends.
T. Burnett: IRF status 5-feb-061 DC2 IRF Status Meeting agenda, references at:
1 ACD studies: 1. Light Yield Determination for top ACD Tiles 2. Looking for holes (screws) in the ACD data Instrument Analysis Workshop VI Luis C. Reyes.
GLAST LAT Project Test Beam Meeting, June 6, 2006 S. Funk 1/6 PS Positron Simulations Stefan Funk June 6, 2006.
Bill Atwood, SCIPP/UCSC, Oct, 2005 GLAST 1 Back Ground Rejection Status for DC2 a la Ins. Miner Analysis.
Bill Atwood, SCIPP/UCSC, Jan., 2006 GLAST 1 The 3 rd Pass Back Rejection Analysis using V7R3P4 (repo) 1)Training sample: Bkg: Runs (SLAC) v7r3p4.
Tracker Reconstruction SoftwarePerformance Review, Oct 16, 2002 Summary of Core “Performance Review” for TkrRecon How do we know the Tracking is working?
GLAST LAT Project Instrument Analysis Workshop #4, 14 July 2005 David Smith CAL calib at SLAC SVAC1 Stability of the CAL Calibrations Online script “suites”
Preliminary Study of CC-Inclusive Events in the P0D using Global Reconstruction Rajarshi Das (w/ Walter Toki) Nu-Mu Prelim. Meeting Dec 2010 CSU.
DC2 at GSFC - 28 Jun 05 - T. Burnett 1 DC2 C++ decision trees Toby Burnett Frank Golf Quick review of classification (or decision) trees Training and testing.
Pass 6: GR V13R9 Muons, All Gammas, & Backgrounds Muons, All Gammas, & Backgrounds Data Sets: Muons: allMuon-GR-v13r9 (14- Jan-2008) AG: allGamma-GR-v13r9.
T. Burnett1 GLAST LAT ProjectDOE/NASA Baseline-Preliminary Design Review, January 9, 2002 SAS Software: Sources Detector geometry model Simulation Event.
Feb. 7, 2007First GLAST symposium1 Measuring the PSF and the energy resolution with the GLAST-LAT Calibration Unit Ph. Bruel on behalf of the beam test.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
Science Analysis Software DC-2 Kickoff Workshop March 1-3, 2005 Tracy Usher 1/25 Data Challenge II Kickoff Workshop Simulation and Reconstruction Overview.
1 GLAST Italian meeting Francesco Longo & Carlotta Pittori Udine 11 marzo 2004 V. Cocco, A.Giuliani, P.Lipari, A. Pellizzoni, M.Prest, M.Tavani. E.Vallazza.
GLAST LAT Project CU Beam Test Workshop 3/20/2006 C. Sgro’, L. Baldini, J. Bregeon1 Glast LAT Calibration Unit Beam Test Status Report on Online Monitor.
GLAST/LAT analysis group 31Jan05 - T. Burnett 1 Creating Decision Trees for GLAST analysis: A new C++-based procedure Toby Burnett Frank Golf.
Bill Atwood, 6-Feb-2008 Pass 6: GR V13R9 Muons, All Gammas, & Backgrounds Muons, All Gammas, & Backgrounds Overview Overview Data Sets: Muons: allMuon-GR-v13r9.
Feb. 3, 2007IFC meeting1 Beam test report Ph. Bruel on behalf of the beam test working group Gamma-ray Large Area Space Telescope.
GLAST LAT ProjectNovember 18, 2004 I&T Two Tower IRR 1 GLAST Large Area Telescope: Integration and Test Two Tower Integration Readiness Review SVAC Elliott.
Background Rejection Activities in Italy
Simulation Tools for Test Beam
Background Rejection Prep Work
Effect of t42 algorithm on jets
GLAST LAT tracker signal simulation and trigger timing study
Interactions of hadrons in the Si-W ECAL
GLAST Large Area Telescope:
Instrument Analysis Workshop II
KLOE General Meeting - LNF March,
Event Classification & Background Rejection
Overview of Instrument Analysis Effort
Linear Collider Simulation Tools
A First DC2 Analysis with New Recons
Overview Goal Study GEM variables in SVAC ntuple
Gamma-ray Large Area Space Telescope
Testing some CAL specs Level 3 CAL requirement 5.5.5:
Imaging crystals with TKR
Mini Tower Preliminary Results
Tower A: A First Look Finding the Data: Login: THIS ONE! user: glast
CR Photon Working Group
A. Menegolli, University of Pavia and INFN Pavia
Eduardo do Couto e Silva Feb 28, 2006
G. Battistoni, R. Brunetti, K. Cieślik, A. Dąbrowska, R. Dolfini,
Linear Collider Simulation Tools
Studies of the Time over Threshold
Analysis of GLAST Balloon Experiment Data
Overview of Beam Test Benoit, Ronaldo and Eduardo Nov 8 , 2005 thanks to Steve and Bill for helping to consolidate all the information.
Presentation transcript:

Searching for photons in the LAT Francesco Longo Elisabetta Bissaldi University & INFN Trieste, Italy

Overview Searching for photons in cosmic ray data Description of simple selection cuts (see Elisabetta, IA5) Analysis of 8 and 16 Towers configurations Application of DC2 cuts Preliminary analysis with R.Rando’s random forests program Conclusions

g m Ground Analysis e+ e- Cosmic Ray Muons Cosmic Ray Photon Candidates Event Display: 8 Towers W SI g e+ e- W SI m

“Photon cuts”: Simple selections on 2 - 16 towers

Photon Candidate Selection Bill Atwood (march 2005) Elisabetta (august 2005) Original idea (see IA3) Analysis of Monte Carlo samples to study Photons and Muons distributions Initial selection cuts Definition of 2 g topologies VtxAngle>0. “VERTEX” VtxAngle=0. “1TRACK” Development of an algorithm based on classification trees Study of relative importance of variables for selection Application of the algorithm to cosmic ray data collected with a single tower configuration (RUN 1338) Extended analysis (see IA5) Used only “VERTEX” topology Searched for further selections analysing important variables 2, 4, and 6 towers configurations Deepened the analysis by studying different vertex topologies new: 8 and 16

Example of variable selection: “Tkr1SSDVeto” Tkr1SSDVeto ≡ Number of silicon planes between the top of the extrapolated track and the first plane that has a hit near the track. Only planes that have wafers which intersect the extrapolated track are considered. Can be used as a back-up for the ACD. Selection: At least 1 plane before start of track Track projection Found track Tkr1SSDVeto>1

MonteCarlo and DATA samples MC AllGamma 2, 4, 6, 8 Towers 1 x 106 simul. events Isotropic 18 MeV – 18 GeV [v5r0608p7] 16 Towers 4 x 106 simul. events 10 MeV – 20 GeV [v5r0703p4] MC Muons 2, 4, 6, 8 Towers 4 x 106 simul. events Isotropic PDG formula and low energy extension [v5r0608p7] 16 Towers [v5r0703p4] DATA Cosmic Rays 2 Towers: RUN 135002134 (462678 triggered events) [v5r0608p6] 4 Towers: RUN 135002778 (61996 trig. events) [v4r060302p23] 6 Towers: RUN 135004075 (390035 trig. events) [v5r0608p6] 8 Towers: RUN 135004453 (510562 trig. events) [v5r0608p6] 16 Towers: RUN 135005345 (470286 trig. events) [v5r0703p4]

2, 4, 6, 8 and 16 Towers Results 2 4 6 8 16 MC Photons Muons DATA 1.0 Final Selections (cumulative): TkrNumTracks>0 CalEnergySum>10. VtxAngle>0. Tkr1ToTFirst>1 Tkr1SSDVeto>2 Tkr1ToTTrAve>1.3 MC Photons Muons DATA Towers config. STEPS N°events % 2 No cuts 33341 100 219322 462676 Final Sel. 1672 5.0 25 1.110-2 4715 1.0 4 62070 391538 61996 5002 8.1 73 1.910-2 764 1.2 6 89638 558757 390035 8451 9.4 144 2.610-2 5224 1.3 8 117604 729585 510562 11845 10.1 178 2.410-2 6610 16 944445 2120472 470286 122873 13.0 537 2.510-2 6930 1.5

2 Towers Results 100 % 10 % MC AllGamma 1 % MC Muons 0.1 % 0.01 % DATA Final Selections (cumulative): TkrNumTracks>0 CalEnergySum>10. VtxAngle>0. Tkr1ToTFirst>1. Tkr1SSDVeto>1 Tkr1ToTTrAve>1.3 STEPS 1. 2. 3. 4. 5. 6.

16 Towers Results 100 % 10 % MC AllGamma 1 % 0.1 % 0.01 % DATA Final Selections (cumulative): TkrNumTracks>0 CalEnergySum>10. VtxAngle>0. Tkr1ToTFirst>1. Tkr1SSDVeto>1 Tkr1ToTTrAve>1.3 VtxStatus = 162 MC Muons STEPS 1. 2. 3. 4. 5. 6. 7.

Photon Sample from Elisabetta’s analysis MC Photons 2Towers DATA 2Towers CalEnergySum CalEnergySum NEW cuts NEW cuts ~1% of initial triggers N° events N° events Energy in MeV Energy in MeV TkrNumTracks > 0 CalEnergySum > 10. VtxAngle > 0. Tkr1TotFirst > 1. Tkr1SSDVeto > 1 Tkr1ToTTrAve > 1.3 VtxStatus = 162 Extrapolate these numbers for full LAT we expect a factor of 100 more photon candidates in the next data set Should we apply Elisabetta’s cuts and create a photon sample for everyone?

VtxStatus Distribution DATA 2 Towers no cuts NEW cuts 162 0 and 1 N° events N° events VtxStatus Value VtxStatus Value 1 162 86 % 6 % 3 % 162 34 128 59 % 13 % 7 % 0.6 % of initial triggers!

g dir g dir VtxStatus 162 tracks tracks hit hit VtxStatus = 162 W SI hit SI tracks tracks VtxStatus = 162 2 tracks vertex, vertex tracks share first hit and DOCA point lies inside track hits

AcdActiveDist3D No Cuts Simple Cuts

Analysis with DC2 cuts

How to get CTB variables in? Take original merit file Use GlastClassify executable file “apply.exe” Recalculates the CTB variables and fill the ntuples No need for reading back the recon file This will be needed if we asked also for “Onboard” filter type variables

“DC2” Cuts Following Bill and Julie presentations at C&A group TCut DC2Trigger="(GltWord&10)>0&&(GltWord!=35)"; //TCut DC2Filter="FilterStatus_HI==0"; TCut DC2PrefilterCal="CalEnergyRaw>5&&CalCsIRLn>4"; TCut DC2AcdVeto="(AcdCornerDoca>-5&&AcdCornerDoca<50&&CTBTkrLATEdge<100)||((AcdActiveDist3D>0 || AcdRibbonActDist>0)&&Tkr1SSDVeto<2)"; // Filter out high energy electrons TCut DC2ElectronVeto="((min(abs(Tkr1XDir),abs(Tkr1YDir)) < .01 && Tkr1DieEdge < 10 && AcdActiveDist3D > 0) || (Tkr1SSDVeto < 7 && AcdActiveDist3D > -3) || ( AcdActiveDist3D >(-30 + 30*(Tkr1FirstLayer-2)))) && (CTBGAM+0.17*CTBBestLogEnergy)<1.75"; // Filter out some events at low-med energy where the Track 2 starts higher up than Track 1. TCut DC2AnotherVeto="(Tkr1FirstLayer - Tkr2FirstLayer) < 0 && Tkr2FirstLayer > 2 && Tkr2TkrHDoca>10 && (CTBGAM+0.16*CTBBestLogEnergy)<1.32 "; Following Bill and Julie presentations at C&A group

“DC2” Cuts // Heavy Ion Filter TCut HeavyIonVeto = "CTBBestEnergy>1000 && (((CalTransRms-1.5)*Tkr1ToTTrAve)<5)&&CTBGAM>0.5"; // Anti-correlated filter TCut AntiCorrVeto = "CTBBestEnergy<500&&((CalCsIRLn+2.5*Tkr1CoreHC/Tkr1Hits)<8 || (Tkr1CoreHC/Tkr1Hits)<0.03)"; //Cosmic proton filter TCut ProtonVeto = "Tkr1FirstLayer<6&&AcdActiveDist3D>-80 && ((AcdActiveDist3D/100)>1)"; //Global Ribbon Extension and AcdCornerDoca Extension TCut GlobalRibbonVeto = "(AcdRibbonActDist > -10) || (AcdCornerDoca >-5 && AcdCornerDoca<50 &&CTBTkrLATEdge<200)"; TCut DC2Vetos = DC2AcdVeto||DC2ElectronVeto||DC2AnotherVeto||HeavyIonVeto||AntiCorrVeto|| ProtonVeto||GlobalRibbonVeto; TCut Basic = "CTBCORE>0.1&&CTBBestEnergyProb>0.1&&CTBGAM>0."; TCut ratecut = "CTBBestZDir<-0.3&&CTBBestEnergy>100.";

“DC2” Cuts TCut DC2Base1 = "CTBCORE>0.1 &&CTBBestEnergyProb>0.3 &&CTBGAM>0.35"; TCut DC2Base2 = "CTBCORE>0.1 &&CTBBestEnergyProb>0.1 &&CTBGAM>0.55"; TCut DC2Base3 = "CTBCORE>0.35 &&CTBBestEnergyProb>0.35 &&CTBGAM>0.50"; // Final Analysis Classes TCut GoodEvent1=(DC2Base1&&DC2Trigger&&DC2PrefilterCal)&&!DC2Vetos; TCut GoodEvent3=(DC2Base3&&DC2Trigger&&DC2PrefilterCal)&&!DC2Vetos; // For DC2 we propose using the GoodEvent1 and GoodEvent3 analysis classes. TCut EventClassA = GoodEvent3; TCut EventClassB = GoodEvent1&&!GoodEvent3;

Results Simple Cuts “DC2” EventClass A and B CalEnergyRaw VtxStatus

Results CalEnergyRaw VtxStatus Simple Cuts “DC2” EventClass A and B

Results CalEnergyRaw VtxStatus Simple Cuts “DC2” EventClass A and B

Analysis with rForest (random forest package developed by R.Rando)

How to do that? Package available in /users/rando/rForest Actually tag v2r1p2 Two executables + some utilities Create two sets of data (gamma and muon sample) fcreate.exe takes the input merit files of the classes to be analysed and create the selection tree file More details on rForest could be found at Riccardo’s tutorial at the INFN GLAST SW meeting http://glast.ba.infn.it/~glast/f2f/bari2_rando.pdf fprocess.exe calculates the result for each event

Results Simple Cuts rForest (not optimized)Cuts CalEnergyRaw VtxStatus NB. Different surface muons file (due to a technical problem)

Results CalEnergyRaw VtxStatus Simple Cuts rForest (not optimized)Cuts

Results CalEnergyRaw VtxStatus Simple Cuts rForest (not optimized)Cuts

Plot of overall distributions in “photon samples” Preliminary analysis

Simple Cuts (1) Results (6930 evts) GltGemSummary CalEnergyRaw VtxStatus CalMipNum

“DC2” (2) results (4392 evts) GltGemSummary CalEnergyRaw VtxStatus CalMipNum

rForest (3) Results (19565 evts) GltGemSummary CalEnergyRaw VtxStatus CalMipNum

Simple Cuts (1) results CalMIPRatio AcdNoTop AcdActiveDist3D AcdTileCount

“DC2” (2) results CalMIPRatio AcdNoTop AcdActiveDist3D AcdTileCount

rForest (3) Results CalMIPRatio AcdNoTop AcdActiveDist3D AcdTileCount

To Do List Refine rForest analysis Try GlastClassify analysis Closer look to selected photon candidates Deeper use of ACD and CAL variables Analysis of selected distributions Redo for FSW Reanalysis of “muon” recon candidates

Conclusions Simple selection cuts seem to be satisfactory Need to develop ad hoc selection trees Simple analysis performed Need to continue with other runs

Backup

Variables’ Importance TkrNumTracks CalEnergyRaw Tkr1ToTFirst VtxAngle Tkr1SSDVeto Tkr1ToTTrAve VtxStatus

CTB Variable Definitions CTBAcdLowerTileCount AcdNoSideRow3 CTBAcdUpperTileCount AcdNoTop+AcdNoSideRow0+AcdNoSideRow1+AcdSideRow2 CTBBestPSFerr Acos(BestDir * McDir) CTBBestXDir, YDir, ZDir Best direction selected between VTX and Tkr1 Solutions CTBBestDeltaEoE Best Energy Error relative to MC energy D(E)/E CTBBestEnergy Best Estimated energy from among the 4 methods CTBBestEnergyProb Energy Prob. Knob. Energy RESOLUTION: Prob. for the selected energy correction method CTBBestLogEnergy Log(CTBBestEnergy) – base 10 CTBCORE Image Prob. Knod. IMAGE RESOULTION CTBCalDocaAngle CalTrackDoca + 80*CalTrackAngle CTBCalMaxXtalRatio CalXtalMaxEne/CalEnergyRaw CTBCalTransTCCD CalTransRms + .1*(CalTrackDoca - 2.5*Tkr1CoreHC) CTBGAM Bkg. Rejection Prob Knob: BACK GROUND CONTAMTINATION CTBLastLayerProb, ParamProb, ProfileProb, TrackerProb Prob. for the "corrections" of each energy method against a fixed functional standard.

More... CTB Variable Definitions CTBTkrCoreCalDoca CalTrackDoca - 2.5*Tkr1CoreHC – Bkg. Rej. Variable CTBTkrEnergyFrac TkrEnergyCorr/EvtEnergyCorr – Bkg. Rej. Variable CTBTkrLATEdge 742. - max(abs(Tkr1X0) , abs(Tkr1Y0)) – Fiducial Volume Var. CTBTkrSHRCalAngle CalTrackAngle - .2*TkrSurplusHitRatio – Bkg. Rej. Var. CTBVTX Internal Prob use to select between 1TKr solution and VTX