ROSETTA simulations on SPIS for DFMS ion measurements

Slides:



Advertisements
Similar presentations
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Advertisements

Magnetic Fields and Forces AP Physics B. Facts about Magnetism Magnets have 2 poles (north and south) Like poles repel Unlike poles attract Magnets create.
Lunar Results Hybrid code. Initial condition Amplitude of dipole for the moon= 0 Lunar Radius=16.9 (unit of length) Maximum time = 200(inverse of gyro.
K.C. H ANSEN Z HENGUANG H UANG University of Michigan SWMF User Meeting, October 13-14, 2014.
Valeriy Tenishev, Dmitriy Borovikov, Nicolas Fougere, Yuni Lee, Michael R. Combi, Tamas Gombosi, Martin Rubin.
DS-1/Plasma Experiment for Planetary Exploration (PEPE) PEPE – is a particle spectrometer capable of resolving energy, angle and mass & charge composition.
Update on Self Pinch Transport of Heavy Ion Beams for Chamber Transport D. V. Rose, D. R. Welch, Mission Research Corp. S. S. Yu, Lawrence Berkeley National.
Physics of fusion power Lecture 11: Diagnostics / heating.
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Solar system science using X-Rays Magnetosheath dynamics Shock – shock interactions Auroral X-ray emissions Solar X-rays Comets Other planets Not discussed.
STREAMER DYNAMICS IN A MEDIA CONTAINING DUST PARTICLES* Natalia Yu. Babaeva and Mark J. Kushner Iowa State University Department of Electrical and Computer.
Identifying Interplanetary Shock Parameters in Heliospheric MHD Simulation Results S. A. Ledvina 1, D. Odstrcil 2 and J. G. Luhmann 1 1.Space Sciences.
Outline (HIBP) diagnostics in the MST-RFP Relationship of equilibrium potential measurements with plasma parameters Simulation with a finite-sized beam.
Plasma Kinetics around a Dust Grain in an Ion Flow N F Cramer and S V Vladimirov, School of Physics, University of Sydney, S A Maiorov, General Physics.
Physics of Fusion power Lecture4 : Quasi-neutrality Force on the plasma.
Chapter 5 Diffusion and resistivity
David Cooke Adrian Wheelock Air Force Research Laboratory,
Shu Nishioka Faculty of Science and Technology, Keio Univ.
 Magnets have 2 poles (north and south)  Like poles repel  Unlike poles attract  Magnets create a MAGNETIC FIELD around them.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Why plasma processing? (1) UCLA Accurate etching of fine features.
Plasma diagnostics using spectroscopic techniques
Plasmas. The “Fourth State” of the Matter The matter in “ordinary” conditions presents itself in three fundamental states of aggregation: solid, liquid.
Modeling of Materials Processes using Dimensional Analysis and Asymptotic Considerations Patricio Mendez, Tom Eagar Welding and Joining Group Massachusetts.
Bone Trajectories and Model Simulations Kathleen Mandt, Ray Goldstein, Christoph Koenders May 29, 2013 IES Team Meeting – San Antonio.
Two problems with gas discharges 1.Anomalous skin depth in ICPs 2.Electron diffusion across magnetic fields Problem 1: Density does not peak near the.
Damping of the dust particle oscillations at very low neutral pressure M. Pustylnik, N. Ohno, S.Takamura, R. Smirnov.
Lecture 27 Magnetic Fields: II
Geant4 Tracking Test (D. Lunesu)1 Daniela Lunesu, Stefano Magni Dario Menasce INFN Milano GEANT4 TRACING TESTs.
Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.
How ARTEMIS Contributes to Key NLSI Objectives C.T. Russell, J. Halekas, V. Angelopoulos, et al. NLSI Lunar Science Conference Ames Research Center Monday,
University of Colorado at Boulder Santa Fe Campus Center for Integrated Plasma Studies Implicit Particle Closure IMP D. C. Barnes.
Warp LBNL Warp suite of simulation codes: developed to study high current ion beams (heavy-ion driven inertial confinement fusion). High.
Numerical Model of an Internal Pellet Target O. Bezshyyko *, K. Bezshyyko *, A. Dolinskii †,I. Kadenko *, R. Yermolenko *, V. Ziemann ¶ * Nuclear Physics.
Chapter 26 Electromagnetism. Mass of Electron Determined by J.J. Thomson Determined by the deflection of the electron in a cathode ray tube.
PLASMA DENSITIES FROM SPACECRAFT POTENTIAL MEASUREMENTS CALIBRATED BY THE ASPOC, EDI, CIS, PEACE AND WHISPER EXPERIMENTS ON CLUSTER Arne Pedersen and Bjørn.
Lunar Surface Atmosphere Spectrometer (LSAS) Objectives: The instrument LSAS is designed to study the composition and structure of the Lunar atmosphere.
Computational Astrophysics: Magnetic Fields and Charged Particle Dynamics 8-dec-2008.
3D modelling of the plasma environment of particle-emitting space probes - Modélisation 3D de l’environnement plasmique des sondes spatiales émettant des.
Analytic modelling of Rosetta spacecraft potential measurements based on SPIS simulations Master thesis by: Christian Hånberg Swedish Institute of Space.
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
Gyeongbok Jo 1, Jongdae Sohn 2, KyeongWook Min 2, Yu Yi 1, Suk-bin Kang 2 1 Chungnam National University 2 Korea Advanced Institute of Science.
Unstructured Meshing Tools for Fusion Plasma Simulations
3D modelling of the plasma environment of particle-emitting space probes - Modélisation 3D de l’environnement plasmique des sondes spatiales émettant.
From: Ion chemistry in the coma of comet 67P near perihelion
Nazli TURAN, Yavuz Emre KAMIS, Murat CELIK
Introduction to Plasma Physics and Plasma-based Acceleration
Introduction Context  All electric orbit transfer of GEO spacecraft
Magnetic Fields and Forces
SESAME: Surface Electric Sounding and Acoustic Monitoring Experiment
Velocity Distribution and Temperature
5. Conductors and dielectrics
ROSINA, COSAC & PTOLEMY Reviewer: Heather Franz 2/15/16 – 2/17/16
Finite difference code for 3D edge modelling
Dipole Antennas Driven at High Voltages in the Plasmasphere
Magnetic Fields and Forces
Magnetic Fields and Forces
U C L A Electron Cloud Effects on Long-Term Beam Dynamics in a Circular Accelerator By : A. Z. Ghalam, T. Katsouleas(USC) G. Rumolo, F.Zimmermann(CERN)
Instrumental Chemistry
GENERATION OF NOVEL EEDFS IN A TANDEM PLASMA REACTOR
Charged Particles Moving in Simultaneous Electric and Magnetic Fields
A sample is injected into the spectrometer and heated to a vapour.
Physics of fusion power
Magnetic Fields and Forces
Magnetic Fields and Forces
Magnetic Fields and Forces
Magnetic Fields and Forces
Magnetic Fields and Forces
Presentation transcript:

ROSETTA simulations on SPIS for DFMS ion measurements G. Tcherniatinsky, J.J. Berthelier LATMOS

Context : ROSETTA mission and ROSINA mass spectrometer Up to September in 2016, ROSETTA was an orbiter analyzing the coma of comet 67P. ROSINA DFMS: instrument facing comet core and using magnetic mass spectrometer to separate masses with a resolution 1/3000 on neutrals.

What does ROSINA DFMS really measures in ion mode ? 67P coma : density ~ 1000 part/cm³, electron temp ~ 7 eV → Spacecraft charging ~ -40/0 V Ion mode : ions entering ROSINA DFMS have already been deflected by plasma sheath. DFMS is looking straight in a « mirage » : we need to know how the field of view is deflected in ion mode before using its data.

Contents of the study ROSETTA step-by-step modelization of the sheath using SPIS and study of the influence of each parameter (last presentation in 2017) Presentation of the results of ROSETTA model. Study of a sphere and a panel in the same plasma conditions : SPIS in a low ion temperature (0.025 eV). SPIS issues and questions.

Geometrical model ROSETTA NUMERICAL MODEL (1) NUMERICAL MODEL (2) Y 12m 9m B2 2m X 2.8m 2m B1 3m Y 16m 2m Z X Z B R 5m

Geometrical model ROSETTA NUMERICAL MODEL (3) X 4m 2m B1 B2 2.3m Y 0.7m 12m 4m Z

ROSETTA simulation description Reducted size of solar panels (15 m to 3m). Effect studied on SPIS in last presentation: potential less negative of ~2V. Verification with PIC models : equilibrium value of potential is almost the same. Variation of parameters velocity, temperatures, densities, presence of photoelectrons.

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) 600 Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) SimulationDt (s) 1.0e-4 PlasmaDt (s) Potential bias (V) -20 Debye length (m) 0.61 Equilibrium potential (V) -26 Ion log density map normal Z Potential map normal Z

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) 600 Solar power x axis (relative to 1UA power) 0.6 Mesh size (m) Detector mesh size 0.02 Duration (s) 1.4e-4 SimulationDt (s) 2.2e-7 PlasmaDt (s) Potential bias (V) -20 Debye length (m) 0.61 Equilibrium potential (V) -16 Ion log density map normal Z Potential map normal Z

Study of simpler geometries to check our results We observe that the ion current collected by spacecraft at equilibrium is larger than current entering external boundary. (55 uA against 100 uA) Very low ion temperature (0.025 eV) in comparison with electron temperature (7 eV) The results seems reasonable on ROSETTA, but become unreasonable on simpler geometries. Why ?

Geometrical models sphere & panel

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) 0.01 SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 4.3 Potential map normal Z Ion log density map normal Z

Ion log density map normal Z Potential map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) 600 Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 4.3 Ion log density map normal Z Potential map normal Z

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) 0.16 SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 20.3 Potential map normal Z Ion log density map normal Z

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) 600 Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 7.3 Potential map normal Z Ion log density map normal Z

Ion log density map normal Z Potential map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 4.3 Ion log density map normal Z Potential map normal Z

Ion log density map normal Z Potential map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) 600 Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 4.3 Ion log density map normal Z Potential map normal Z

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) 0.04 SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 7.3 Potential map normal Z Ion log density map normal Z

Ion log density map normal Z Electron model Maxwell-Bolzmann Density (part/m³) 10⁹ Electron temp (eV) 7 Ion temp (eV) 0.0258 Velocity x axis (m/s) 600 Solar power x axis (relative to 1UA power) 0.0 Mesh size (m) 0.6 Detector mesh size 0.02 Duration (s) 0.0168 SimulationDt (s) 1.0e-4 PlasmaDt (s) Debye length (m) 0.61 X (m) 7.3 Potential map normal Z Ion log density map normal Z

Conclusions Velocity is not the only factor that permits the presence of an asymptote on the sheath for low ion temperatures. The plane shape does not allow us to get an asymptote for the potential near the external boundary. We observe a potential floor of ~-4V when external surface is high enough. We observe an asymptote for ROSETTA sheath but not for simpler geometries : Why ?

Questions Very cold ions in SPIS : do you observe larger sheaths ? How do you solve this issue ? Possibility to restart a simulation from a registered intermediate state ? Huge difference of plasmaDt when using Boltzmann models for electron population. Do you use very low plasmaDt on Boltzmann ? Precise documentation of the model ? → How PIC particles are generated ? (On time steps ? On nodes?) → How electron current is computed at each simulationDt when we use Boltzmann model ? → How global parameters boundary conditions work ?