Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,

Slides:



Advertisements
Similar presentations
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Advertisements

Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis  D. Bobinac, M. Marinovic, E.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
The groove model of osteoarthritis applied to the ovine fetlock joint
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
H. Moriyama, Ph. D. , O. Yoshimura, Ph. D. , S. Kawamata, Ph. D. , K
W. Wang, S. Wei, M. Luo, B. Yu, J. Cao, Z. Yang, Z. Wang, M. B
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the horse  C.W. McIlwraith, D.D. Frisbie, C.E.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Changes in immunolocalisation of β-dystroglycan and specific degradative enzymes in the osteoarthritic synovium  S. Wimsey, M.R.C.S., C.F. Lien, Ph.D.,
Promotion of the intrinsic damage–repair response in articular cartilage by fibroblastic growth factor-2  F.M.D. Henson, Ph.D., E.A. Bowe, Ph.D., M.E.
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
Effects of exercise vs experimental osteoarthritis on imaging outcomes
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Effect of puerarin on bone formation
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis  S. Ghassemi-Nejad, T. Kobezda,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma  C.A.M. Huser, M.Sc., M. Peacock, M.E. Davies,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Time to be positive about negative data?
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
C. Zingler, H.-D. Carl, B. Swoboda, S. Krinner, F. Hennig, K. Gelse 
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
Stem cell therapy for human cartilage defects: a systematic review
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
Evaluations of radiographic joint space – do they adequately predict cartilage conditions in the patellofemoral joint of the patients undergoing total.
On new bone formation in the pre-osteoarthritic joint
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
R. J. U. Lories, M. D. , Ph. D. , J. Peeters, B. Sc. , K. Szlufcik, Ph
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
H.L. Reesink, A.E. Watts, H.O. Mohammed, G.D. Jay, A.J. Nixon 
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis 
Osteoarthritis year 2012 in review: biology
Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years  J. Carnes, O.
Sclerostin immunoreactivity in histological sections.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Osteoarthritis year in review 2016: mechanics
The chondrocyte primary cilium
I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis  S. Ghassemi-Nejad, T. Kobezda,
Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative  K. Bloecker,
General Information Osteoarthritis and Cartilage
Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site  L.A. Vonk, T.S. de Windt, A.H.M.
Presentation transcript:

Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis and Cartilage  Volume 15, Issue 3, Pages 343-349 (March 2007) DOI: 10.1016/j.joca.2006.08.014 Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 (A) Diagram of sites from which the cartilage was taken in the MCJ of the left forelimb. For the diagram of the entire limb, dorsal is to the left of the diagram and palmar is to the right. For the diagram of the carpal bones, medial is to the left and lateral to the right (RP; RD; IP; ID, modified from Murray et al.25). (B) Toluidine Blue staining of equine cartilage defining the cartilage zones from which the cell counts were taken: the AS contains flattened cells near the surface; the MZ contains rounder cells that are individually spaced; the DZ contains larger cells, clumped together. Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Typical immunolocalisation of cathepsin B (A) within articular cartilage from a high intensity exercised horse (bar=600μm). (B) Magnification of box in A (bar=300μm). (C) An intense staining of cathepsin B was noted in chondrocyte clusters (arrow head), adjacent to the damaged AS (asterisk) (bar=100μm). Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 The percentage of cathepsin B positive cells at each test site in low and high intensity exercise groups within the (A) AS, (B) MZ, (C) DZ. Grey bars, low intensity exercise; black bars, high intensity exercise. Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 (A) The percentage of cathepsin B positive cells throughout the cartilage depth at the four test sites (RD; RP; ID; IP). (B) The percentage of cathepsin B positive cells within each cartilage zone, pooled from all dissection sites (AS; MZ; DZ). Grey bars, low intensity exercise; black bars, high intensity exercise; *, P<0.001. Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Typical immunolocalisation of cathepsin D (A) within articular cartilage from a high intensity exercised horse (bar=600μm). (B) Magnification of box in A (bar=300μm). (C) An intense staining of cathepsin D was noted in chondrocyte clusters (arrow heads), adjacent to the damaged AS (asterisk) (bar=100μm). Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 The percentage of cathepsin D positive cells at each test site in low and high intensity exercise groups within the (A) AS, (B) MZ, (C) DZ. Grey bars, low intensity exercise; black bars, high intensity exercise; #P<0.05; a, P<0.05 low intensity vs high intensity exercise. Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 (A) The percentage of cathepsin D positive cells throughout the cartilage depth at the four test sites (RD; RP; ID; IP). (B) The percentage of cathepsin D positive cells within each cartilage zone, pooled from all dissection sites (AS; MZ; DZ). Grey bars, low intensity exercise; black bars, high intensity exercise; #P<0.05; ∗, P<0.01; a, P<0.05 low intensity vs high intensity exercise. Osteoarthritis and Cartilage 2007 15, 343-349DOI: (10.1016/j.joca.2006.08.014) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions