D. Bonamy, F. Célarié, C. Guerra-Amaro, L. Ponson, C.L. Rountree, E. Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces.

Slides:



Advertisements
Similar presentations
Fatigue crack initiation in Ti-6Al-4V alloy
Advertisements

PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
Stress, strain and more on peak broadening
Optical near-field control of nanoresonators Near Field Optics Group OMR ICB - Université de Bourgogne Benoit Cluzel, Loïc.
ILCC Edinburgh, July 2002 VAN DER WAALS INTERACTION AND STABILITY OF MULTILAYERED LIQUID-CRYSTALLINE SYSTEMS dr. Andreja [ arlah Univerza v Ljubljani.
Chap.8 Mechanical Behavior of Composite
Fractography Resource - 1 Examples of Steel Fractography Professor M Neil James Department of Mechanical &
Material Performance Centre University of Manchester UNTF 2010 Andrew Wasylyk UNTF 2010 Assessment of Ductile Tearing and Plastic collapse in 304 SS Andrew.
CHE 333 Class 18 Fracture of Materials.
Giant Rabi splitting in metal/semiconductor nanohybrids
Composites Testing and Model Identification Châlons-en-Champagne, 28 January 2003 Z. JENDLI*, J. FITOUSSI*, F. MERAGHNI** et D. BAPTISTE*. *LM3 UMR CNRS.
Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification Stéphane Roux, François Hild LMT, ENS-Cachan Atelier « Problèmes.
FRACTURE Brittle Fracture Ductile to Brittle transition
FRACTURE, FAILURE AND FATIGUE Catastrophic failure in materials resulting from crack development.
LECTURER5 Fracture Brittle Fracture Ductile Fracture Fatigue Fracture
3 – Fracture of Materials
Chapter 7 Fracture: Macroscopic Aspects. Goofy Duck Analog for Modes of Crack Loading “Goofy duck” analog for three modes of crack loading. (a) Crack/beak.
ME 240: Introduction to Engineering Materials Chapter 8. Failure 8.1 CHAPTER 8.
Elisabeth Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces CEA-Saclay The Chinese University of Hong-Kong, September.
Crack Nucleation and Propagation
Mechanical Engineering Tribology Laboratory (METL) November 14, 2013 Yi Shen Research Assistant Effect of Retained Austenite and Residual Stress on Rolling.
Normal Strain and Stress
An Experimental Study and Fatigue Damage Model for Fretting Fatigue
NOTCH EFFECTS INTRODUCTION OF A NOTCH AFFECTS THE FRACTURE PROCESS Eg: INCREASES THE DUCTILE-BRITTLE TRANSITION TEMPERATURE OF STEEL NOTCH CREATES A LOCAL.
1 ASTM : American Society of Testing and Materials.
Micromechanics Contribution to the Analysis of Diffusion Properties Evolution in Cement-Based Materials Undergoing Carbonation Processes Journées Scientifiques.
1 Universality Classes of Constrained Crack Growth Name, title of the presentation Alex Hansen Talk given at the Workshop FRACMEET, Institute for Mathematical.
1 Relaxation and Transport in Glass-Forming Liquids Motivation (longish) Democratic motion Conclusions G. Appignanesi, J.A. Rodríguez Fries, R.A. Montani.
The Chinese University of Hong-Kong, September 2008 Stochastic models of material failure -1D crack in a 2D sample - Interfacial fracture - 3D geometry.
PhD student Ilia Malakhovski (thesis defense June 26) Funding Stichting FOM NWO Priority Programme on Materials Disorder and criticality in polymer-like.
SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay,
Constraining and size effects in lead-free solder joints
The Chinese University of Hong-Kong, September Statistical characterization of fracture How to include these microstructure-scale mechanisms into.
Mechanical characterization of lead- free solder joints J. Cugnoni*, A. Mellal*, Th. J. Pr. J. Botsis* * LMAF / EPFL EMPA Switzerland.
Mechanical Properties of Metals
Examples of Aluminium Fractography
Mechanical Properties
The Classical Theory of Elasticity
Effect of disorder on the fracture of materials Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France MATGEN IV, Lerici, Italy September.
Early structural concepts  Some of the structures in earlier have endured for ages.  Materials used were brittle type like bricks, stones, mortar: poor.
Laurent Ponson Institut Jean le Rond d’Alembert CNRS – Université Pierre et Marie Curie, Paris From microstructural to macroscopic properties in failure.
November 14, 2013 Mechanical Engineering Tribology Laboratory (METL) Arnab Ghosh Ph.D. Research Assistant Analytical Modeling of Surface and Subsurface.
Application of ESPI in investigating the static deformation of a lead-free joint D. Karalekas 1, J.Cugnoni 2, J. Botsis 2 1 Lab. Adv. Manufact. and Testing,
Andrew Wasylyk UNTF 2011 Andrew Wasylyk UNTF 2011.
Copyright Prentice-Hall Chapter 21 Fundamentals of Machining.
Russian Research Center” Kurchatov Institute” Theoretical Modeling of Track Formation in Materials under Heavy Ion Irradiation Alexander Ryazanov “Basic.
1 Class #2.1 Civil Engineering Materials – CIVE 2110 Strength of Materials Mechanical Properties of Ductile Materials Fall 2010 Dr. Gupta Dr. Pickett.
Week 4 Fracture, Toughness, Fatigue, and Creep
Presented by Statistical Physics of Fracture: Recent Advances through High-Performance Computing Thomas C. Schulthess Computer Science and Mathematics.
Mesoscale Priority Research Direction Microstructure Based Heterogeneity Evolution Leading to Phase Transformation and Damage/Failure Events Meso-Scale.
Exam 2 Grade Distribution. Stress-strain behavior (Room T): Ideal vs Real Materials TS
Probabilistic safety in a multiscale and time dependent model Probabilistic safety in a multiscale and time dependent model for suspension cables S. M.
Problems 1. A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 82.4MPa√m. If, during service use, the plate is.
Week 4 Fracture, Toughness, Fatigue, and Creep
SIMPLE STRESS & STRAIN ► EN NO GUIDED BY EN NO PROF. V.R.SHARMA GEC PALANPUR APPLIED MECHANICS DEPARTMENT.
Plastic deformation Extension of solid under stress becomes
3. Fracture mechanisms in real materials  Fracture of crystals: Different fracture mechanisms The importance of plasticity  Quasi-brittle fracture: R-curve.
Theory of Nanoscale Friction Theory of Nanoscale Friction Mykhaylo Evstigneev CAP Congress University of Ottawa June 14, 2016.
Materials Science Chapter 8 Deformation and Fracture.
Lab #3: Strat Columns: Draw to scale Lab #3: Strat Columns: Draw to scale Includes: (left to right) Age (era and period) Name of unit Thickness of unit.
Materials Science Metals and alloys.
MIT Amorphous Materials 8: Mechanical Properties
Dynamic Property Models
Laser Effects on IFE Final Optics
MIT Amorphous Materials 8: Mechanical Properties
Fracture Process Zone -1
Experiment #1 Tension Test
Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
DR. AL EMRAN ISMAIL FRACTURE MECHANISMS.
Mechanical Failure(파괴)
Presentation transcript:

D. Bonamy, F. Célarié, C. Guerra-Amaro, L. Ponson, C.L. Rountree, E. Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces CEA-Saclay, France Collaboration S. Morel (US2B, Bordeaux, France) H. Auradou, J.-P. Hulin (FAST, Orsay, France) MatGenIV, Cargèse, September 2007 FRACTURE MECHANISMS & SCALING PROPERTIES OF FRACTURE SURFACES

Scale of the material heterogeneities Include the basic mechanisms into a statistical description Macroscopic scale Mechanics of materials MatGenIV, Cargèse, September 2007

No easy averaging at a crack tip: Strong stress gradient The most brittle link breaks first Rare events statistics No «equivalent effective» material (r) r Inglis (1913), Griffith (1920) c 0 0 MatGenIV, Cargèse, September 2007

Fractography: + 3D observations : Collective effects - History reconstruction In situ observations: + Real time observation of basic mechanisms - Confined to the free surface Experimental tools MatGenIV, Cargèse, September 2007

1- Scaling properties of fracture surfaces 2- Statistical model… & model experiment 3- Damage: a general mechanism? 4- Conclusion & Work in progress OUTLINE MatGenIV, Cargèse, September 2007

x z h z h 1- Scaling properties… =0.75 Self-affine profile 1/2 (nm) Slope: =0.75 ζ ~ 0.8 independent of material & loading; depends on material

Ti 3 Al-based alloy = nm 0.5mm 1- Scaling properties… Profiles perpendicular to the direction of crack propagation = 0.78 z h max (z) MatGenIV, Cargèse, September 2007

Aluminum alloy =0.77 3nm 0.1mm 1- Scaling properties… = 0.77 z h max (z) Profiles perpendicular to the direction of crack propagation MatGenIV, Cargèse, September 2007

Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm 1- Scaling properties… Δh 2D (Δz, Δx) = ( A ) 1/2 h (nm) z (nm) AB ΔxΔx ΔzΔz L. Ponson, D. Bonamy, E.B. PRL 2006 L. Ponson et al, IJF 2006 h/ x z/ x 1/ z = 0.75 = 0.6 Z = / ~ 1.2 z

Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert Coll. L. Barbier, P. Ebert z z = 0.75 = 0.6 z = / ~ 1.2 h (Å) 1- Scaling properties…

Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z h (Å) 1- Scaling properties…

Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z Mortar (Coll. S. Morel & G. Mourot) h (Å) 1- Scaling properties…

Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm z/ x 1/z ( l z / l x ) 1/ ( z/ l z )/( x/ l x ) 1/ z h/ x ( h/ l x )/( x/ l x ) Universal structure function Very different length scales h (Å) 1- Scaling properties…

General result : anisotropic self-affine surface independent of disorder Crack front= «elastic line» Fracture surface = trace left behind by the front J.-P. Bouchaud, EB, G. Lapasset, J. Planès (93) 2- Statistical models

D. Bonamy et al, PRL 2006 K II Linear elastic material Weak distorsions K II = 0 z x f(x,z) KI0KI0 KI0KI0 h(x,z) 2- Statistical models Principle of local symmetry

(x,z,h(x,z))= q (z,h(x,z))+ t (z,x) + t (z,x) ζ=0.39 A. Rosso & W. Krauth (02) β=0.5 and z =0.8 O.Duemmer & W. Krauth (05) 2- Statistical models MatGenIV, Cargèse, September 2007 Logarithmic roughness S. Ramanathan, D. Ertaş & D. Fisher (97)

« Model » material: sintered glass beads (L. Ponson et al, PRL06; coll. H. Auradou, J.-P. Hulin & P. Vié) Porosity 3 to 25% Grain size 50 to 100 m Vitreous grain boudaries Linear Elastic Material 2- … & model experiment MatGenIV, Cargèse, September 2007

ζ=0.4 ± 0.05 β=0.5 ± 0.05 z =ζ/β=0.8 ± exponents Universal 2D correlation function + Structure 2D Packing of sintered glass beads 1/ z 2- … & model experiment

3- Damage… What did we MISS ? Damage ! Amorphous silica Ti 3 Al-based alloy Roughness measurements performed within the damaged zone ! damaged zone size MatGenIV, Cargèse, September 2007

Disorder line roughness Elastic restoring forces rigidity of the line Undamaged material Transmission of stresses through long range undamaged material :long range interactions (1/r 2 ) very rigid line 3- Damage… Transmission of stresses through a « Swiss cheese »: Screening of elastic interactions lower rigidity Long range Short range MatGenIV, Cargèse, September 2007

3- Damage… r « R c r » R c RcRc Damage zone scale Large scales : elastic domain MatGenIV, Cargèse, September 2007 =0.75, =0.6 =0.4, =0.5 OR log ?

=0.75 h ~ log z =0.75 h ~ log z Rc ~ 30nm 75 nm 3- Damage…

Quasi-brittle material: Mortar… … In transient roughening regime R c increases with time Rc(x 1 ) =0.75 =0.4 x1x1 x2x2 75nm Rc(x 1 ) Rc(x 2 ) =0.75 =0.4 Coll. S. Morel 3- Damage… MatGenIV, Cargèse, September 2007

Steel broken at different temperatures (Coll. S. Chapuilot) toughness yield stress T=20K, Y = 1305MPa, K Ic = 23MPa.m 1/2 Rc = 20 µm =0.75 h ~ log z Rc T=98K, Y = 772MPa, K Ic = 47MPa.m 1/2 Rc = 200 µm =0.75 h ~ log z Rc 3- Damage…

4- Conclusion… MatGenIV, Cargèse, September 2007 Analytical model of fracture of an elastic linear disordered material Out-of-plane roughness =0.4, =0.5 sintered glass beads, sandstone, wood logarithmic roughness glass, steel Length scales >> Process zone size ~ 100 nm 20 m to 200 m

4- Conclusion… MatGenIV, Cargèse, September 2007 z c 0 +f(z,t) 0 +Vt (Santucci, Bonamy, Ponson & Måløy, 07 ) In-plane fracture Dynamic phase transition Stable crack K I <K Ic Propagating crack K I >K Ic

4- … & work in progress MatGenIV, Cargèse, September 2007 PROCESS ZONE REGIME Out-of-plane roughness =0.8, =0.6 glass wood metallic alloys … Length scales Process zone size A model ? ELASTIC REGIME Algebraic/logarithmic roughness ? « Map » of disorder:

Cavity scale? MatGenIV, Cargèse, September … & work in progress Metallic glasses: isotropic fracture surfaces! Coll. G. Ravichandran (Caltech), D. Boivin & JL Pouchou (Onera) Coupled equations: growth of cavities/ line progression Silicate glasses: damage formation at the crack tip Coll. E. Charlaix (Lyon I), M. Ciccotti (Montpellier II)

3- Damage… 300 m30 m Zr-based metallic glass (Coll. D. Boivin, J.-L. Pouchou, G. Ravichandran) MatGenIV, Cargèse, September 2007

? 3- Damage… MatGenIV, Cargèse, September 2007

4- Conclusion… 3 classes of universality ? 1 Linear elastic region =0.4 =0.5 2 Intermediate region: damage = « perturbation » of the front (screening) =0.8 =0.6 3 Cavity scale: isotropic region = = MatGenIV, Cargèse, September 2007

Models: - in-plane roughness (D. Bonamy, S. Santucci & K.J. Målǿy) - how to take damage into account? Evolution of ductility: steel (C. Guerra/S. Chapuilot) Metallic glasses Silicate glasses ( C. Rountree, D. Bonamy) 4- … & Work in progress T UCLA, May 31, 2007

NLE zone size 3- Damage… D. Bonamy et al., (06) V (m/s) Rc (nm) Correlation length Velocity (m/s) (nm) and R c decrease with v =R c

z x Endommagement en pointe de fissure Ecrantage des interactions entre deux points du front KI0KI0 KI0KI0 3- Endommagement… > 2 =0.75; =0.6; z=1.2

3- Endommagement Verres métalliques (Xi et al, PRL 94, 2005) Base-Ce K Ic =10MPa m Base-Mg K Ic =2MPa m

Si z > 1 mm ζ ~ 0.4 Si z < 1 mm ζ ~ 0.8 Collaboration avec S. Morel & G. Mourot, Bordeaux I, France Log (Δh) (mm) log(Δz) (mm) 3- Endommagement

3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre Exposant de rugosité indépendant de la microstructure: ζ = 0.40 ± 0.04 Analyse 1D

Matériau modèle dont on peut moduler: -la porosité -la taille des billes d 3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre

3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre ζ=0.4 ± 0.05 β=0.5 ± 0.05 z=ζ/β=0.8 ±0.05 L. Ponson, H. Auradou et J.P. Hulin, soumis à Phys. Rev. E Les 3 exposants Analyse 2D Forme universelle de la fonction de corrélation 2D +

3- Des surfaces de rupture anormalement rugueuses: les céramiques de verre Diamètre des billes: 100 µm Porosité: 5% Analyse 2D

= 1 mm 3- Des surfaces de rupture anormalement rugueuses: le mortier à grande échelle Si z > 1 mm ζ ~ 0.4 Si z < 1 mm ζ ~ 0.8 Collaboration S. Morel et G. Mourot, LRBB, Bordeaux

Si z > 100 nm ζ ~ Des surfaces de rupture anormalement rugueuses: le verre à grande échelle = 100 nm Si z < 100 nm ζ ~ 0.8 S. Wiederhorn et al. 05

Humid air n-tetradecane

l a δ=h 2 -h 1 s v h1h1 h2h2 B A h STM tip C1C1 D C2C2 D1D1 D2D2 wedge

Topothesies l z and l x : mortar glass metal Crossover function is also universal 1- Scaling properties …

2- Fracture surfaces abnormally rough: glass ceramics ΔzΔz ΔhΔh Distribution of Δh Δz Δh/Δz ζ P( Δh ) ~ Δz -ζ g( Δh/Δz ζ ) Mono-affine ζ = 0.40 ± 0.04 P.Δz ζ

Gaussian distribution 2- Fracture surfaces abnormally rough: glass ceramics ΔzΔz ΔhΔh Distribution of Δh Δz Δh/Δz ζ P.Δz ζ

f(z) z x f t = K I - K Ic + f z ( ) 2 μ KI0KI0 KI0KI0 3- Towards one scenario for all the materials? For an homogeneous and elastic material: H. Gao and J. Rice, 89 In-plane displacement of the crack front:

f(z) z x f t = K I - K Ic + f z ( ) 2 μ KI0KI0 KI0KI0 3- Towards one scenario for all the materials? For an homogeneous and elastic material: H. Gao and J. Rice, 89 Equation of pinning/depinning of an elastic line In-plane displacement of the crack front:

(r) Zone endommagée Introduction c min c max Distribution des seuils de rupture

exposant angle Alliage métallique z direction du front x direction de propagation Demande française et américaine de brevet (2005) direction de propagation ζ = 0.75 β = 0.6

Matériau « modèle »: fritté de verre (L. Ponson, H. Auradou & J.-P. Hulin, 06) - Porosité contrôlée (3 to 25%) - Taille de grains (50 to 200 m) - Joints vitreux - Rupture mixte inter/trans-granulaire - Taille zone de process comparable verre << taille grains 2- Modèles statistiques…

Journées de Physique Statistique- 25 janvier 2007 Examen des surfaces de rupture Johnson et Holloway (1968) 0.5 mm

Principle of local symmetry: K II =0 2- Statistical models UCLA, May 31, 2007