Volume 21, Issue 3, Pages (September 2011)

Slides:



Advertisements
Similar presentations
Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics  Angelika S. Rambold, Sarah.
Advertisements

Keap1/Nrf2 Signaling Regulates Oxidative Stress Tolerance and Lifespan in Drosophila Gerasimos P. Sykiotis, Dirk Bohmann Developmental Cell Volume 14,
Gastrulation Movements: the Logic and the Nuts and Bolts Maria Leptin Developmental Cell Volume 8, Issue 3, Pages (March 2005) DOI: /j.devcel
Volume 70, Issue 4, Pages (May 2011)
Volume 11, Issue 2, Pages (August 2012)
Volume 44, Issue 3, Pages (March 2016)
Volume 18, Issue 5, Pages (May 2010)
Epicardial Spindle Orientation Controls Cell Entry into the Myocardium
Volume 12, Issue 12, Pages (September 2015)
Volume 15, Issue 4, Pages (April 2012)
Ca2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle
Volume 8, Issue 5, Pages (November 2008)
Volume 23, Issue 1, Pages (July 2012)
by Sara M. Weis, Jeffrey N. Lindquist, Leo A. Barnes, Kimberly M
Volume 10, Issue 7, Pages (July 2003)
Volume 40, Issue 1, Pages (January 2017)
Volume 31, Issue 4, Pages (August 2008)
Volume 2, Issue 5, Pages (November 2012)
Stephanie L. Gupton, Frank B. Gertler  Developmental Cell 
Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics  Angelika S. Rambold, Sarah.
Volume 2, Issue 1, Pages (January 2002)
Volume 8, Issue 1, Pages (January 2005)
Volume 14, Issue 2, Pages (August 2011)
Volume 43, Issue 5, Pages e3 (December 2017)
Volume 23, Issue 6, Pages (December 2012)
Volume 25, Issue 18, Pages (September 2015)
Volume 14, Issue 2, Pages (February 2008)
PMI: A ΔΨm Independent Pharmacological Regulator of Mitophagy
Volume 13, Issue 6, Pages (June 2011)
Volume 20, Issue 2, Pages (February 2011)
Yuan Lin, David S.W. Protter, Michael K. Rosen, Roy Parker 
Volume 162, Issue 3, Pages (July 2015)
Volume 73, Issue 2, Pages (January 2008)
Volume 19, Issue 8, Pages (April 2009)
David N. Criddle, Alexei V. Tepikin  Molecular Cell 
Volume 14, Issue 6, Pages (June 2008)
Volume 22, Issue 2, Pages (January 2012)
Volume 21, Issue 6, Pages (December 2011)
Volume 20, Issue 1, Pages (January 2011)
Therapeutic concentrations of cyclosporine A, but not FK506, increase P-glycoprotein expression in endothelial and renal tubule cells  Ingeborg A. Hauser,
ATP Released via Gap Junction Hemichannels from the Pigment Epithelium Regulates Neural Retinal Progenitor Proliferation  Rachael A. Pearson, Nicholas.
Volume 9, Issue 5, Pages (May 2009)
Volume 32, Issue 1, Pages (January 2015)
Jen-Yi Lee, Richard M. Harland  Current Biology 
Volume 23, Issue 2, Pages (August 2012)
MicroRNAs in a Cardiac Loop: Progenitor or Myocyte?
Local Arrangement of Fibronectin by Myofibroblasts Governs Peripheral Nuclear Positioning in Muscle Cells  William Roman, João P. Martins, Edgar R. Gomes 
Volume 40, Issue 6, Pages e6 (March 2017)
Volume 96, Issue 11, Pages (June 2009)
Volume 6, Issue 3, Pages (September 2007)
Volume 15, Issue 7, Pages (April 2005)
Targeted delivery of DNA to the mitochondrial compartment via import sequence- conjugated peptide nucleic acid  A Flierl, C Jackson, B Cottrell, D Murdock,
Volume 20, Issue 3, Pages (March 2011)
Volume 38, Issue 3, Pages (March 2013)
GRM7 Regulates Embryonic Neurogenesis via CREB and YAP
Epicardial Spindle Orientation Controls Cell Entry into the Myocardium
Control of Centriole Length by CPAP and CP110
Role of PINK1 Binding to the TOM Complex and Alternate Intracellular Membranes in Recruitment and Activation of the E3 Ligase Parkin  Michael Lazarou,
Volume 75, Issue 4, Pages (October 1998)
Volume 12, Issue 1, Pages (July 2015)
Volume 10, Issue 7, Pages (July 2003)
Volume 62, Issue 4, Pages (May 2016)
ChREBPα enhances mitochondrial oxidative metabolism.
Volume 11, Pages (January 2019)
Volume 5, Issue 1, Pages (January 2007)
Volume 1, Issue 6, Pages (June 2005)
Volume 24, Issue 5, Pages (March 2013)
Volume 19, Issue 8, Pages (April 2009)
Volume 14, Issue 10, Pages (March 2016)
Aminoglycoside Enhances the Delivery of Antisense Morpholino Oligonucleotides In Vitro and in mdx Mice  Mingxing Wang, Bo Wu, Sapana N. Shah, Peijuan.
Presentation transcript:

Volume 21, Issue 3, Pages 469-478 (September 2011) The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation  Jennifer R. Hom, Rodrigo A. Quintanilla, David L. Hoffman, Karen L. de Mesy Bentley, Jeffery D. Molkentin, Shey-Shing Sheu, George A. Porter  Developmental Cell  Volume 21, Issue 3, Pages 469-478 (September 2011) DOI: 10.1016/j.devcel.2011.08.008 Copyright © 2011 Elsevier Inc. Terms and Conditions

Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 Mitochondrial Morphology Changes during Cardiac Development (A) Epifluorescence microscopy of MTG in live cultured ventricular myocytes at ages E9.5 and E13.5. (B) Fixed myocytes stained for α-actinin in the contractile apparatus and AIF in mitochondria. (C) Fixed myocytes stained for cyt c in mitochondria. (D) Measurements of mitochondrial length in cultured WT E9.5, E11.5, and E13.5 myocytes (∗p < 0.05 compared to E9.5). (E) Transmission electron micrographs from WT E9.5 and E13.5 hearts. (F) A histogram of mitochondrial ultrastructure classes from electron micrographs from ventricular myocytes of WT E9.5, E11.5, and E13.5 hearts. The weighted classifications were significantly different among the three ages (p < 0.05). All error bars represent SEM. Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 Mitochondrial Function Changes as the Embryonic Heart Ages (A and B) Epifluorescence microscopy of TMRE with MTG (A) and DCF with MTR (B) in cultured myocytes at E9.5 and E13.5. (C and D) Measurements of Δψm (C, TMRE normalized to MTG) and ROS (D, DCF fluorescence) in cultured E9.5, E11.5, and E13.5 myocytes (∗p < 0.05 compared to E9.5). (E and F) Representative traces of Δψm in myocytes treated with 1 μg/ml oligomycin (Oligo), then either 1 μM rotenone (Rot, E) or 2 mM malonate (Mal, F), followed by 1 μM FCCP. Data are shown as ratio of fluorescence at any time point to first time point. Bar graphs represent the percent (%) change in TMRE after addition of rotenone or malonate compared to the total change after addition of the protonophore, FCCP (∗p < 0.05 compared to E9.5). All error bars represent SEM. Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 Mitochondrial Structure and Function Changes after Closure of the mPTP (A) Epifluorescence microscopy of MTG in live E9.5 cultured ventricular myocytes: WT, WT with 500 nM CsA for 2 hr, and CyP-D null (CyP-D KO) myocytes. (B) Mitochondrial length in cultured WT E9.5 myocytes with and without treatment with 500 nM CsA or 500 nM FK-506 for 2 hr, CyP-D null E9.5 myocytes, and WT E11.5 and E13.5 myocytes (∗p < 0.05 compared to WT E9.5). (C) Electron micrographs of WT E9.5 and CyP-D null E9.5 hearts. (D) A histogram of mitochondrial ultrastructure classes in electron micrographs from ventricular myocytes of WT E9.5, E11.5, E13.5, or CyP-D null E9.5 hearts. (E) Images of E9.5 cultured ventricular myocytes stained with calcein-AM in the presence of CoCl2. Quantification showed increased calcein fluorescence after treatment with 500 nM CsA (∗p < 0.05). (F and G) Measurements of Δψm (F) and ROS (G) in cultured WT E9.5 myocytes with and without treatment with 500 nM CsA or 500 nM FK-506 for 2 hr, CyP-D null E9.5 myocytes, and WT E11.5 and E13.5 myocytes (∗p < 0.05 compared to WT E9.5). All error bars represent SEM. Expanded graphical data are provided in Figures S2C–S2E. Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 Closure of the Embryonic mPTP Enhances Myocyte Differentiation (A) Cultured WT E9.5 myocytes with and without treatment with 500 nM CsA or 500 nM FK-506 for 2 hr, CyP-D null (KO) E9.5 myocytes, and WT E13.5 myocytes were stained with antibodies to α-actinin and AIF to label Z bands and mitochondria (mito), respectively. (B) Quantification of Z band number in WT E9.5 myocytes with and without treatment with 500 nM CsA or 500 nM FK-506 for 2 hr, CyP-D null E9.5 myocytes, and WT E11.5 and E13.5 myocytes (∗p < 0.05 compared to WT E9.5). All error bars represent SEM. Expanded graphical data and details of quantification are provided in Figures S2F and S3A. Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 5 CyP-D Deletion Accelerates Myocyte Differentiation of E9.5, but Not E11.5, Myocytes In Vivo Images (3,500× magnification) taken of the left ventricular wall of E9.5 (25–26 somites) and E11.5 hearts and trabeculae of E11.5 hearts from WT and CyP-D null embryos. Arrows indicate examples of Z bands of the myofibrils. En, endothelial cell; L, luminal side of the wall; Ep, epicardial surface. Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 6 Myocyte Differentiation Is Regulated by Changes in Oxidative Stress Downstream of mPTP Activity (A) Cultured WT E9.5 and E13.5 myocytes were treated with 100 μM BKA, 100 μM CAT, 100 μM 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), or 10 μM tert-butyl hydroperoxide (tBHP) from 24 to 48 hr in culture and stained with antibodies to α-actinin to label Z bands. (B) Quantification of Z band number in WT E9.5 and E13.5 myocytes treated with combinations of BKA, CAT, Trolox, or tBHP from 24 to 48 hr in culture (p < 0.05 compared to WT ∗E9.5 or ∗∗E13.5). All error bars represent SEM. Developmental Cell 2011 21, 469-478DOI: (10.1016/j.devcel.2011.08.008) Copyright © 2011 Elsevier Inc. Terms and Conditions