In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.

Slides:



Advertisements
Similar presentations
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Advertisements

Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis  F. Intema, T.P. Thomas,
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
The groove model of osteoarthritis applied to the ovine fetlock joint
Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants  R.J.H. Custers, W.J.A. Dhert, D.B.F. Saris,
The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment  T.N.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Y. H. Sniekers, G. J. V. M. van Osch, A. G. H. Ederveen, J. Inzunza, J
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Cross-sectional and predictive associations between plasma adipokines and radiographic signs of early-stage knee osteoarthritis: data from CHECK  W.E.
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study  Elizabeth.
Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling  Y. Chen, S. Lin, Y. Sun, J. Guo, Y. Lu, C.W. Suen,
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
J. W. MacKay, P. J. Murray, B. Kasmai, G. Johnson, S. T. Donell, A. P
Metabolic Dysregulation Accelerates Progression in Early Degenerative Rat Knee Joints Driven by Local Inflammatory Changes  H.M. de Visser, S.C. Mastbergen,
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis  K. Wiegant, P.M. van Roermund, F. Intema,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Biochemical markers of joint tissue damage increase shortly after a joint bleed; an explorative human and canine in vivo study  L.F.D. van Vulpen, M.E.R.
Osteoarthritis and Cartilage
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
Very rapid clearance after a joint bleed in the canine knee cannot prevent adverse effects on cartilage and synovial tissue  N.W.D. Jansen, Ph.D., G.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Comparison of load responsiveness of cartilage T1rho and T2 in porcine knee joints: an experimental loading MRI study  H. Hamada, T. Nishii, S. Tamura,
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage  T.N.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
Y. Sun, N. Haines, A. Roberts, M. Ruffolo, D. Mauerhan, J. Ingram, M
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Knee Images Digital Analysis (KIDA): a novel method to quantify individual radiographic features of knee osteoarthritis in detail  A.C.A. Marijnissen,
Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint  L.N.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores  N.L.A. Fell, B.M. Lawless,
Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Micro-CT quantification of subchondral endplate changes in intervertebral disc degeneration  J.P.H.J. Rutges, O.P. Jagt van der, F.C. Oner, A.J. Verbout,
Contrast-enhanced computed tomography imaging using a cationic contrast agent correlates with the equilibrium modulus of mouse tibial plateau cartilage 
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
The lateral wedged insole with subtalar strapping significantly reduces dynamic knee load in the medial compartment  Y. Kuroyanagi, M.D., T. Nagura, M.D.,
B. C. Roberts, D. Thewlis, L. B. Solomon, G. Mercer, K. J. Reynolds, E
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Influence of medial meniscectomy on stress distribution of the femoral cartilage in porcine knees: a 3D reconstructed T2 mapping study  T. Shiomi, T.
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
P. Rahnamay Moshtagh, N. M. Korthagen, S. G. Plomp, B. Pouran, A
The canine ‘groove’ model of osteoarthritis is more than simply the expression of surgically applied damage  Simon C. Mastbergen, M.Sc., Anne C. Marijnissen,
In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT  K. Chiba, M. Ito, M. Osaki, M. Uetani,
M. L. Roemhildt, B. D. Beynnon, A. E. Gauthier, M. Gardner-Morse, F
Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation  L.G.E. Cox, C.C. van Donkelaar,
Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen.
Osteoarthritis and Cartilage
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
Presentation transcript:

In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W. Hazewinkel, D. Gouwens, J.W.J. Bijlsma, H. Weinans, F.P.J.G. Lafeber, S.C. Mastbergen  Osteoarthritis and Cartilage  Volume 18, Issue 5, Pages 691-698 (May 2010) DOI: 10.1016/j.joca.2010.01.004 Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 a. Representative micrographs of histology. Insert: sample locations at the tibial plateau. Cartilage degeneration is represented by histological damage (b) and a decrease in PG content (c). Each bar represents the mean change (±s.e.m.) between experimental and control joint (absolute change for the histology and percentage change for the PG content) for the lateral (lat) and medial (med) compartment. (* indicates statistical significant difference of P<0.05 and ** indicates P<0.01). Osteoarthritis and Cartilage 2010 18, 691-698DOI: (10.1016/j.joca.2010.01.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Subchondral plate changes. a. Representative micro-CT images of the lateral and medial subchondral plate of the control and experimental joint. b. Cylinder location; centred on the weight-bearing area of the tibial plateau. c. Plate thickness (PlTh) and d. Plate porosity (PlPor), each bar represents the mean change (±s.e.m.) between experimental and control joint (percentage change of PlTh and PlPor) for the lateral and medial compartment (* indicates statistical significance of P<0.05). Osteoarthritis and Cartilage 2010 18, 691-698DOI: (10.1016/j.joca.2010.01.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Trabecular bone changes. Each bar represents the mean change (±s.e.m.) between experimental and control joint (percentage change of the fraction of (a) BV/TV and of (b) the trabecular thickness (TbTh) and (c) absolute change for the SMI) for the lateral and medial compartment each (* indicates statistical significant difference of P<0.05 and ** indicates P<0.01). Osteoarthritis and Cartilage 2010 18, 691-698DOI: (10.1016/j.joca.2010.01.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Correlations between individual cartilage changes and changes of the subchondral plate for the lateral and medial compartment (* indicates statistical significance of P<0.05 and ** indicates P<0.01). Osteoarthritis and Cartilage 2010 18, 691-698DOI: (10.1016/j.joca.2010.01.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Schematical overview of changes in the ACLT-meniscectomy model. Cartilage damage is present in both the medial and lateral compartment, but more severe on the medial side where the meniscus is removed. Thinning and increasing porosity of the subchondral plate coincides with cartilage degeneration on the medial side (inset). Laterally, trabecular bone decreases (−), a sign of unloading, either by total paw unloading or locally due to the varus angle (arrows). These trabecular changes do not occur on the medial side (=/−) where removal of the meniscus increases local (peak) load on the bone, counteracting overall unloading. Osteoarthritis and Cartilage 2010 18, 691-698DOI: (10.1016/j.joca.2010.01.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions