Domitilla Del Vecchio, Hussein Abdallah, Yili Qian, James J. Collins 

Slides:



Advertisements
Similar presentations
Michail Stamatakis, Nikos V. Mantzaris  Biophysical Journal 
Advertisements

Jingkui Wang, Marc Lefranc, Quentin Thommen  Biophysical Journal 
LIF stabilizes the pluripotent population while 2i up‐regulates OSN; related to Fig 4 LIF stabilizes the pluripotent population while 2i up‐regulates OSN;
Bistability, Bifurcations, and Waddington's Epigenetic Landscape
Volume 5, Issue 1, Pages e12 (July 2017)
The 3D Genome Shapes Up For Pluripotency
Gábor Balázsi, Alexander van Oudenaarden, James J. Collins  Cell 
Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation  Marios Tomazou, Mauricio Barahona, Karen.
Screening for Novel Regulators of Embryonic Stem Cell Identity
Volume 14, Issue 5, Pages (February 2016)
Screening for Novel Regulators of Embryonic Stem Cell Identity
The Interplay between Feedback and Buffering in Cellular Homeostasis
Defining Network Topologies that Can Achieve Biochemical Adaptation
A Theoretical Model of Slow Wave Regulation Using Voltage-Dependent Synthesis of Inositol 1,4,5-Trisphosphate  Mohammad S. Imtiaz, David W. Smith, Dirk.
Dynamical Scenarios for Chromosome Bi-orientation
Pejman Mohammadi, Niko Beerenwinkel, Yaakov Benenson  Cell Systems 
Impulse Control: Temporal Dynamics in Gene Transcription
Shuhei S. Sugai, Koji L. Ode, Hiroki R. Ueda  Cell Reports 
Mean-Independent Noise Control of Cell Fates via Intermediate States
Noise Induces Hopping between NF-κB Entrainment Modes
Inference of Environmental Factor-Microbe and Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical Bayesian Statistical Model  Yuqing.
Clarissa Scholes, Angela H. DePace, Álvaro Sánchez  Cell Systems 
The Nexus of Tet1 and the Pluripotency Network
Fuqing Wu, David J. Menn, Xiao Wang  Chemistry & Biology 
Anastasia Baryshnikova  Cell Systems 
Stem Cell States, Fates, and the Rules of Attraction
Michail Stamatakis, Nikos V. Mantzaris  Biophysical Journal 
Corentin Briat, Ankit Gupta, Mustafa Khammash  Cell Systems 
Volume 4, Issue 1, Pages e4 (January 2017)
Rudolf Jaenisch, Richard Young  Cell 
Dynamic Gene Regulatory Networks of Human Myeloid Differentiation
Andreas Hilfinger, Thomas M. Norman, Johan Paulsson  Cell Systems 
A Visual Framework for Classifying Determinants of Cell Size
Volume 5, Issue 4, Pages e4 (October 2017)
Volume 8, Issue 6, Pages (September 2014)
Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network  Marcin Leda, Andrew J. Holland,
Incoherent Inputs Enhance the Robustness of Biological Oscillators
Volume 49, Issue 2, Pages (January 2013)
Volume 3, Issue 5, Pages e13 (November 2016)
Slow Chromatin Dynamics Allow Polycomb Target Genes to Filter Fluctuations in Transcription Factor Activity  Scott Berry, Caroline Dean, Martin Howard 
Creating Single-Copy Genetic Circuits
Volume 23, Issue 3, Pages (March 2016)
Critical Timing without a Timer for Embryonic Development
Isabelle S. Peter, Eric H. Davidson  Cell 
Margaret J. Tse, Brian K. Chu, Mahua Roy, Elizabeth L. Read 
Volume 25, Issue 13, Pages e5 (December 2018)
Cellular Pliancy and the Multistep Process of Tumorigenesis
Benjamin Pfeuty, Clémence Kress, Bertrand Pain  Biophysical Journal 
Defining Network Topologies that Can Achieve Biochemical Adaptation
Volume 132, Issue 6, Pages (March 2008)
A Dynamical Framework for the All-or-None G1/S Transition
Volume 7, Issue 3, Pages (September 2016)
Volume 13, Issue 1, Pages (October 2015)
Volume 6, Issue 4, Pages e3 (April 2018)
Adam C. Wilkinson, Hiromitsu Nakauchi, Berthold Göttgens  Cell Systems 
Dale Muzzey, Alexander van Oudenaarden  Cell 
Volume 110, Issue 3, Pages (February 2016)
Isocost Lines Describe the Cellular Economy of Genetic Circuits
Oct-4: The Almighty POUripotent Regulator?
Andrew E. Blanchard, Chen Liao, Ting Lu  Biophysical Journal 
Brandon Ho, Anastasia Baryshnikova, Grant W. Brown  Cell Systems 
Modeling of Response Surfaces with the Producing Function (Equation 2)
Karin J. Jensen, Christian B. Moyer, Kevin A. Janes  Cell Systems 
Tongli Zhang, Paul Brazhnik, John J. Tyson  Biophysical Journal 
Modeling the Cell Cycle: Why Do Certain Circuits Oscillate?
Genome-wide Functional Analysis Reveals Factors Needed at the Transition Steps of Induced Reprogramming  Chao-Shun Yang, Kung-Yen Chang, Tariq M. Rana 
Ping Liu, Ioannis G. Kevrekidis, Stanislav Y. Shvartsman 
Gene Regulation in the Postgenomic Era: Technology Takes the Wheel
Global Splicing Pattern Reversion during Somatic Cell Reprogramming
Extreme Makeover: Converting One Cell into Another
Presentation transcript:

A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate  Domitilla Del Vecchio, Hussein Abdallah, Yili Qian, James J. Collins  Cell Systems  Volume 4, Issue 1, Pages 109-120.e11 (January 2017) DOI: 10.1016/j.cels.2016.12.001 Copyright © 2017 The Authors Terms and Conditions

Cell Systems 2017 4, 109-120.e11DOI: (10.1016/j.cels.2016.12.001) Copyright © 2017 The Authors Terms and Conditions

Figure 1 Reprogramming a Multistable Network (A) Basic idea of reprogramming a system Σu to a target state S0. Colored regions represent different regions of attraction for the states shown, S0′ represents the unique stable steady state following perturbation, and green trace represents the system’s trajectory. (B) Generic cooperative network. The arrowheads on edges represent positive activation and circles represent indeterminate regulation. Only three nodes shown, but an arbitrary number can be present. Cell Systems 2017 4, 109-120.e11DOI: (10.1016/j.cels.2016.12.001) Copyright © 2017 The Authors Terms and Conditions

Figure 2 Reprogramming a Cooperative Network (A) Two-node cooperative network example. (B) Nullclines (dx1/dt = dx2/dt = 0) and vector field for the two-node network in (A). Increasing u1 or u2 changes the shapes of the dx1/dt = 0 or dx2/dt = 0 nullclines, respectively, such that the intersection in the red region disappears before the intersection in the blue region. Therefore, reprogramming to S0 is not possible. Parameters are given in “Type 1 Interactions & Reprogramming Properties” in the STAR Methods. (C) A ball rolling in a valley’s landscape under the force of gravity with increasing perturbation. (D) Type 1 (positive) and type 2 (undetermined or negative) regulatory interactions act as “perturbations” to an n-node cooperative network. Cell Systems 2017 4, 109-120.e11DOI: (10.1016/j.cels.2016.12.001) Copyright © 2017 The Authors Terms and Conditions

Figure 3 Reprogramming Gene Regulatory Network via Feedback Overexpression (A) Two-node cooperative network with feedback overexpression of TFs. (B) High-gain feedback makes the network monostable at the target state x∗, located in the pink region of attraction of target state S0. (C) Pictorial representation of the effect of high-gain negative feedback input on a valley landscape (compare to Figure 1E). (D) Synthetic genetic controller circuit that implements feedback overexpression of TF xi. Species xie, mie, xis, mis represent endogenous TF and mRNA, synthetic TF, and mRNA, respectively. Ii,1 and Ii,2 are inducers, and si is siRNA targeting mie and mis. (E) Time traces of total TF concentrations x1 and x2 (corresponding to the network of A), where each TF is controlled by a copy of the circuit in (D). (F) Trajectories in (x1,x2) plane corresponding to time traces of (E) and nullclines of network in (A). Parameters equivalent to those of Figure 1 (listed in Table S1), for which it is not possible to transition to S0 with preset overexpression. Cell Systems 2017 4, 109-120.e11DOI: (10.1016/j.cels.2016.12.001) Copyright © 2017 The Authors Terms and Conditions

Figure B1 Reprogramming a Network Motif of the Pluripotency Gene Regulatory Network (A) Two-node network motif with Oct4 and Nanog. Sox2 is lumped with Oct4 because these two TFs often act as a heterodimer (Tapia et al., 2015). (B) Representative steady-state landscape with three stable steady states: trophectoderm (TR), pluripotent (PL), and primitive endoderm (PE). (C) Bifurcation diagrams show number, location, and stability of the steady states as u1 or u2 increase. (D) Time traces (10 realizations) of Nanog and Oct4 concentrations while the controller circuit is active (left of arrow) and after shut down (right of arrow). Simulations using the chemical Langevin equation (see “Stochastic Model” in the STAR Methods). Parameters for which preset overexpression fails. Cell Systems 2017 4, 109-120.e11DOI: (10.1016/j.cels.2016.12.001) Copyright © 2017 The Authors Terms and Conditions