ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA Gossipping in Bologna Ozalp Babaoglu.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

AKC Rally Signs These are copies of the 2008 AKC Rally signs, as re-drawn by Chuck Shultz. Use them to print your own signs. Be prepared to use a LOT of.
Chapter 4 Sampling Distributions and Data Descriptions.
EE384y: Packet Switch Architectures
Zhongxing Telecom Pakistan (Pvt.) Ltd
AP STUDY SESSION 2.
1
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Milan Vojnović Microsoft Research Cambridge Collaborators: E. Perron and D. Vasudevan 1 Consensus – with Limited Processing and Signalling.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 4 Computing Platforms.
Processes and Operating Systems
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
1 Hyades Command Routing Message flow and data translation.
David Burdett May 11, 2004 Package Binding for WS CDL.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination. Introduction to the Business.
Introduction to Algorithms 6.046J/18.401J
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Process a Customer Chapter 2. Process a Customer 2-2 Objectives Understand what defines a Customer Learn how to check for an existing Customer Learn how.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1. Name the particles in the atom and give the charges associated with each.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wants.
Correctness of Gossip-Based Membership under Message Loss Maxim GurevichIdit Keidar Technion.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Break Time Remaining 10:00.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
Red Tag Date 13/12/11 5S.
PP Test Review Sections 6-1 to 6-6
1 Atomic Routing Games on Maximum Congestion Costas Busch Department of Computer Science Louisiana State University Collaborators: Rajgopal Kannan, LSU.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 ACM Principles and Practice of Parallel Programming, PPoPP, 2006 Panel Presentations Parallel Processing is.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 Section 5.5 Dividing Polynomials Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Artificial Intelligence
1 Using Bayesian Network for combining classifiers Leonardo Nogueira Matos Departamento de Computação Universidade Federal de Sergipe.
Datorteknik TopologicalSort bild 1 To verify the structure Easy to hook together combinationals and flip-flops Harder to make it do what you want.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Abdollah Khodkar Department of Mathematics University of West Georgia Joint work with Arezoo N. Ghameshlou, University of Tehran.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
PSSA Preparation.
Essential Cell Biology
Datorteknik TopologicalSort bild 1 To verify the structure Easy to hook together combinationals and flip-flops Harder to make it do what you want.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Distributed Computing 9. Sorting - a lower bound on bit complexity Shmuel Zaks ©
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
SLAC and SLACER: Simple copy & rewire algorithms for trust and cooperation in P2P David Hales, Stefano Arteconi, Ozalp Babaoglu University of Bologna,
Gossip Protocols Bimodal Multicast and T-MAN
Presentation transcript:

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA Gossipping in Bologna Ozalp Babaoglu

BabaogluLeiden Meeting 2 Background 2003: Márk Jelasity brings the gossipping gospel to Bologna from Amsterdam : We get good milage from gossipping in the context of Project BISON 2005-present: Continue to get milage in the context of Project DELIS

BabaogluLeiden Meeting 3 What have we done? We have used gossipping to obtain fast, robust, decentralized solutions for Aggregation Overlay topology management Heartbeat synchronization Cooperation in selfish environments

BabaogluLeiden Meeting 4 Collaborators Márk Jelasity Alberto Montresor Gianpaolo Jesi Toni Binci David Hales Stefano Arteconi

BabaogluLeiden Meeting Proactive gossip framework // active thread do forever wait(T time units) q = SelectPeer() push S to q pull S q from q S = Update(S,S q ) // passive thread do forever (p,S p ) = pull * from * push S to p S = Update(S,S p )

BabaogluLeiden Meeting 6 Proactive gossip framework To instantiate the framework, need to define Local state S Method SelectPeer() Style of interaction push-pull push pull Method Update()

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA #1 Aggregation

BabaogluLeiden Meeting 8 Gossip framework instantiation Style of interaction: push-pull Local state S: Current estimate of global aggregate Method SelectPeer(): Single random neighbor Method Update(): Numerical function defined according to desired global aggregate (arithmetic/geometric mean, min, max, etc.)

BabaogluLeiden Meeting 9 Exponential convergence of averaging

BabaogluLeiden Meeting 10 Properties of gossip-based aggregation In gossip-based averaging, if the selected peer is a globally random sample, then the variance of the set of estimates decreases exponentially Convergence factor:

BabaogluLeiden Meeting 11 Robustness of network size estimation 1000 nodes crash at the beginning of each cycle

BabaogluLeiden Meeting 12 Robustness of network size estimation 20% of messages are lost

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA #2 Topology Management #2 Topology Management

BabaogluLeiden Meeting 14 Gossip framework instantiation Style of interaction: push-pull Local state S: Current neighbor set Method SelectPeer(): Single random neighbor Method Update(): Ranking function defined according to desired topology (ring, mesh, torus, DHT, etc.)

BabaogluLeiden Meeting 15 Mesh Example

BabaogluLeiden Meeting 16 Sorting example

BabaogluLeiden Meeting 17 Exponential convergence - time

BabaogluLeiden Meeting Exponential convergence - network size

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA #3 Heartbeat Synchronization #3 Heartbeat Synchronization

BabaogluLeiden Meeting 20 Synchrony in nature Nature displays astonishing cases of synchrony among independent actors Heart pacemaker cells Chirping crickets Menstrual cycle of women living together Flashing of fireflies Actors may belong to the same organism or they may be parts of different organisms

BabaogluLeiden Meeting 21 Coupled oscillators The Coupled oscillator model can be used to explain the phenomenon of self-synchronization Each actor is an independent oscillator, like a pendulum Oscillators coupled through their environment Mechanical vibrations Air pressure Visual clues Olfactory signals They influence each other, causing minor local adjustments that result in global synchrony

BabaogluLeiden Meeting 22 Fireflies Certain species of (male) fireflies (e.g., luciola pupilla) are known to synchronize their flashes despite: Small connectivity (each firefly has a small number of neighbors) Communication not instantaneous Independent local clocks with random initial periods

BabaogluLeiden Meeting 23 Gossip framework instantiation Style of interaction: push Local state S: Current phase of local oscillator Method SelectPeer(): (small) set of random neighbors Method Update(): Function to reset the local oscillator based on the phase of arriving flash

BabaogluLeiden Meeting 24 Experimental results

BabaogluLeiden Meeting 25 Exponential convergence

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA #4 Cooperation in Selfish Environments #4 Cooperation in Selfish Environments

BabaogluLeiden Meeting 27 Outline P2P networks are usually open systems Possibility to free-ride High levels of free-riding can seriously degrade global performance A gossip-based algorithm can be used to sustain high levels of cooperation despite selfish nodes Based on simple copy and rewire operations

BabaogluLeiden Meeting 28 Gossip framework instantiation Style of interaction: pull Local state S: Current utility, strategy and neighborhood within an interaction network Method SelectPeer(): Single random sample Method Update(): Copy strategy and neighborhood if the peer is achieving better utility

BabaogluLeiden Meeting 29 A Copy strategy SLAC Algorithm: Copy and Rewire BCADEFHJKG Compare utilities Rewire

BabaogluLeiden Meeting 30 A Mutate strategy A SLAC Algorithm: Mutate BCDEFHJKG Drop current links Link to random node

BabaogluLeiden Meeting 31 Prisoners Dilemma Prisoners Dilemma in SLAC Nodes play PD with neighbors chosen randomly in the interaction network Only pure strategies (always C or always D ) Strategy mutation: flip current strategy Utility: average payoff achieved

BabaogluLeiden Meeting 32 Cycle 180: Small defective clusters

BabaogluLeiden Meeting 33 Cycle 220: Cooperation emerges

BabaogluLeiden Meeting 34 Cycle 230: Cooperating cluster starts to break apart

BabaogluLeiden Meeting 35 Cycle 300: Defective nodes isolated, small cooperative clusters formed

BabaogluLeiden Meeting 36 Phase transition of cooperation % of cooperating nodes

BabaogluLeiden Meeting 37 Broadcast Application How to communicate a piece of information from a single node to all other nodes While: Minimizing the number of messages sent ( MC ) Maximizing the percentage of nodes that receive the message ( NR ) Minimizing the elapsed time ( TR )

BabaogluLeiden Meeting 38 Broadcast Application Given a network with N nodes and L links A spanning tree has MC = N A flood-fill algorithm has MC = L For fixed networks containing reliable nodes, it is possible to use an initial flood-fill to build a spanning tree from any node Practical if broadcasting initiated by a few nodes only In P2P applications this is not practical due to network dynamicity and the fact that all nodes may need to broadcast

BabaogluLeiden Meeting 39 The broadcast game Node initiates a broadcast by sending a message to each neighbor Two different node behaviors determine what happens when they receive a message for the first time: Pass: Forward the message to all neighbors Drop: Do nothing Utilities are updated as follows: Nodes that receive the message gain a benefit β Nodes that pass the message incur a cost γ Assume β > γ > 0, indicating nodes have an incentive to receive messages but also an incentive to not forward them

BabaogluLeiden Meeting node static random network

BabaogluLeiden Meeting node high churn network

BabaogluLeiden Meeting 42 Fixed random network Average over 500 broadcasts x 10 runs

BabaogluLeiden Meeting 43 High churn network Average over 500 broadcasts x 10 runs

BabaogluLeiden Meeting 44 Some food for thought What is it that makes a protocol gossip based? Cyclic execution structure (whether proactive or reactive) Bounded information exchange per peer, per cycle Bounded number of peers per cycle Random selection of peer(s)

BabaogluLeiden Meeting 45 Some food for thought Bounded information exchange per peer, per round implies Information condensation aggregation Is aggregation the mother of all gossip protocols?

BabaogluLeiden Meeting 46 Some food for thought Is exponential convergence a universal characterization of all gossip protocols? No, depends on the properties of the peer selection step What are the minimum properties for peer selection that are necessary to guarantee exponential convergence?

BabaogluLeiden Meeting Gossip versus evolutionary computing What is the relationship between gossip and evolutionary computing? Is one more powerful than the other? Are they equal?