Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Professor Ronald L. Carter
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Professor Ronald L. Carter
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Long Channel MOS Transistors
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Professor Ronald L. Carter
Lecture 19 OUTLINE The MOSFET: Structure and operation
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Long Channel MOS Transistors
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ EE5342 – Semiconductor Device Modeling and Characterization Lecture 20 March 31, 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

Schedule Change Classes WILL be held on 4/5/10 4/7/10 Dr. Russell will be filling in The previously scheduled make-up classes will be cancelled 4/16/10 (Friday) 4/23/10 (Friday) Project 2 Test changed to W 4/28/10 L20 03/31/10

Inversion for p-Si Vgate>VTh>VFB Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 L20 03/31/10

Inversion for p-Si Vgate>VTh>VFB Fig 10.5* L20 03/31/10

Approximation concept “Onset of Strong Inv” OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh L20 03/31/10

MOS Bands at OSI p-substr = n-channel Fig 10.9* L20 03/31/10

Equivalent circuit above OSI Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 Depl cap, C’d,min = eSi/xd,max Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’d,min L20 03/31/10

MOS surface states** p- substr = n-channel

n-substr accumulation (p-channel) Fig 10.7a* L20 03/31/10

n-substrate depletion (p-channel) Fig 10.7b* L20 03/31/10

n-substrate inversion (p-channel) Fig 10.7* L20 03/31/10

Values for gate work function, fm

Values for fms with metal gate

Values for fms with silicon gate

Typical fms values Fig 10.15* fms (V) NB (cm-3) L20 03/31/10

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L20 03/31/10

Flat-band parameters for n-channel (p-subst)

Flat-band parameters for p-channel (n-subst)

Inversion for p-Si Vgate>VTh>VFB Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 L20 03/31/10

Approximation concept “Onset of Strong Inv” OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh L20 03/31/10

MOS Bands at OSI p-substr = n-channel Fig 10.9* 2q|fp| qfp xd,max L20 03/31/10

Computing the D.R. W and Q at O.S.I. Ex Emax x L20 03/31/10

Calculation of the threshold cond, VT

Equations for VT calculation

n-channel VT for VC = VB = 0 Fig 10.20* L20 03/31/10

Fully biased n-MOS capacitor VG Channel if VG > VT VS VD EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L20 03/31/10 L

Fully biased MOS capacitor in inversion Channel VG>VT VS=VC VD=VC EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L20 03/31/10 L

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L20 03/31/10

Flat-band parameters for n-channel (p-subst)

MOS energy bands at Si surface for n-channel Fig 8.10** L20 03/31/10

Computing the D.R. W and Q at O.S.I. Ex Emax x L20 03/31/10

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L20 03/31/10

Fully biased n- channel VT calc

L20 03/31/10

Computing the threshold voltage

L20 03/31/10

n-channel VT for VC = VB = 0 Fig 10.20* L20 03/31/10

Flat-band parameters for p-channel (n-subst)

Fully biased p- channel VT calc

p-channel VT for VC = VB = 0 Fig 10.21* L20 03/31/10

Ion implantation L20 03/31/10

“Dotted box” approx L20 03/31/10

L20 03/31/10

Mobilities L20 03/31/10

Differential charges for low and high freq From Fig 10.27* L20 03/31/10

Ideal low-freq C-V relationship Fig 10.25* L20 03/31/10

Comparison of low and high freq C-V Fig 10.28* L20 03/31/10

Effect of Q’ss on the C-V relationship Fig 10.29* L20 03/31/10

n-channel enhancement MOSFET in ohmic region 0< VT< VG Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 L20 03/31/10

Conductance of inverted channel Q’n = - C’Ox(VGC-VT) n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2) The conductivity sn = (n’s/t) q mn G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’sqmnW) L20 03/31/10

Basic I-V relation for MOS channel

I-V relation for n-MOS (ohmic reg) ID non-physical ID,sat saturated VDS,sat VDS L20 03/31/10

Universal drain characteristic ID VGS=VT+3V 9ID1 ohmic saturated, VDS>VGS-VT VGS=VT+2V 4ID1 VGS=VT+1V ID1 VDS L20 03/31/10

Characterizing the n-ch MOSFET VD ID D G S B VT VGS L20 03/31/10

Low field ohmic characteristics

MOSFET Device Structre Fig. 4-1, M&A* L20 03/31/10

4-7a (A&M) L20 03/31/10

Figure 4-7b (A&M) L20 03/31/10

Figure 4-8a (A&M) L20 03/31/10

Figure 4-8b (A&M) L20 03/31/10

Body effect data Fig 9.9** L20 03/31/10

References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L20 03/31/10