Volume 107, Issue 10, Pages (November 2014)

Slides:



Advertisements
Similar presentations
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Advertisements

Volume 112, Issue 10, Pages (May 2017)
Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
Steady-State Differential Dose Response in Biological Systems
Dejun Lin, Alan Grossfield  Biophysical Journal 
Volume 104, Issue 3, Pages (February 2013)
Lipid Bilayer Mechanics in a Pipette with Glass-Bilayer Adhesion
Christina E.B. Caesar, Elin K. Esbjörner, Per Lincoln, Bengt Nordén 
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion
Volume 106, Issue 12, Pages (June 2014)
Composition Fluctuations in Lipid Bilayers
Volume 113, Issue 6, Pages (September 2017)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
Volume 96, Issue 4, Pages (February 2009)
Volume 104, Issue 3, Pages (February 2013)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Volume 112, Issue 4, Pages (February 2017)
Volume 113, Issue 9, Pages (November 2017)
Volume 102, Issue 3, Pages (February 2012)
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Volume 99, Issue 8, Pages (October 2010)
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Volume 114, Issue 5, Pages (March 2018)
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
SAXS-Oriented Ensemble Refinement of Flexible Biomolecules
Volume 114, Issue 1, Pages (January 2018)
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Actin Assembly at Model-Supported Lipid Bilayers
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Volume 105, Issue 9, Pages (November 2013)
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Teresa Ruiz-Herrero, Michael F. Hagan  Biophysical Journal 
Volume 92, Issue 1, Pages L07-L09 (January 2007)
Firdaus Samsudin, Alister Boags, Thomas J. Piggot, Syma Khalid 
Volume 95, Issue 9, Pages (November 2008)
Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
The Structural Basis of Cholesterol Accessibility in Membranes
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Ion-Induced Defect Permeation of Lipid Membranes
Robust Driving Forces for Transmembrane Helix Packing
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Areas of Monounsaturated Diacylphosphatidylcholines
Volume 108, Issue 10, Pages (May 2015)
Chris Neale, Henry D. Herce, Régis Pomès, Angel E. García 
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Steady-State Differential Dose Response in Biological Systems
Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells  Jonathan L. Compton,
Modelling Toehold-Mediated RNA Strand Displacement
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 105, Issue 6, Pages (September 2013)
Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1- POPC Discoidal Particles  Søren Roi Midtgaard, Martin Cramer Pedersen,
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 114, Issue 6, Pages (March 2018)
Volume 109, Issue 10, Pages (November 2015)
Volume 111, Issue 9, Pages (November 2016)
Presentation transcript:

Volume 107, Issue 10, Pages 2313-2324 (November 2014) Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding  Anton P. Le Brun, Cathryn L. Haigh, Simon C. Drew, Michael James, Martin P. Boland, Steven J. Collins  Biophysical Journal  Volume 107, Issue 10, Pages 2313-2324 (November 2014) DOI: 10.1016/j.bpj.2014.09.027 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Neutron reflectometry of the N1 peptide binding to solid-supported phospholipid bilayers on silicon: (a) d31-POPC/d31-POPG (2:1) bilayer, (b) d31-POPC/d31-POPS (2:1) bilayer, the symbols with error bars are the data and the solid lines the fit. The corresponding real-space nSLD profile from the fits is also shown: (c) d31-POPC/d31-POPG (2:1) bilayer, (d) d31-POPC/d31-POPS (2:1) bilayer. The dashed vertical lines delineate the different layers in the peptide bound state. In all panels black (○) is bilayer before N1 peptide addition in D2O, red (□) is bilayer with N1 peptide bound in D2O, and green (▵) is bilayer with peptide bound in H2O. To see this figure in color, go online. Biophysical Journal 2014 107, 2313-2324DOI: (10.1016/j.bpj.2014.09.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 The lipid-to-peptide ratio of N1 and N2 peptides in the outer headgroups in anionic phospholipid bilayers as determined from neutron reflectometry data. Biophysical Journal 2014 107, 2313-2324DOI: (10.1016/j.bpj.2014.09.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Neutron reflectometry of the N2 peptide binding to solid-supported phospholipid bilayers on silicon: (a) d31-POPC/d31-POPG (2:1) bilayer, (b) d31-POPC/d31-POPS (2:1) bilayer, the symbols with error bars are the data and the solid lines the fit. The corresponding real-space nSLD profile from the fits is also shown: (c) d31-POPC/d31-POPG (2:1) bilayer, (d) d31-POPC/d31-POPS (2:1) bilayer. The dashed vertical lines delineate the different layers in the peptide bound state. In all panels black (○) is bilayer before peptide addition in D2O, red (□) is bilayer with N2 peptide bound in D2O, and green (▵) is bilayer with N2 peptide bound in H2O. To see this figure in color, go online. Biophysical Journal 2014 107, 2313-2324DOI: (10.1016/j.bpj.2014.09.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 The QCM-D of 10 μM N2 peptide binding to a phospholipid bilayer of POPC/POPS (2:1). The upper panel shows the Δf trace on the left (black trace) and the ΔD trace is shown on the right (red trace). The 3rd, 5th, 7th, 9th, 11th, and 13th overtones are shown but are indistinguishable as all overtones overlap. The lower panel shows the corresponding Sauerbrey mass at each step of the measurement with final masses deposited indicated. VD—vesicle deposition, VR—vesicle rupture, BF—bilayer formation, BW—buffer wash, PA—peptide addition. To see this figure in color, go online. Biophysical Journal 2014 107, 2313-2324DOI: (10.1016/j.bpj.2014.09.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Δf-ΔD plots from the QCM-D data of (a) 10 μM N1 or (b) N2 binding to POPC/POPS (2:1) bilayers, or binding to (c and d) POPC/POPG (2:1) bilayers. The data shown is from the 3rd (black), 5th (red), 7th (green), 9th (blue), 11th (magenta), and 13th (cyan) overtones. To see this figure in color, go online. Biophysical Journal 2014 107, 2313-2324DOI: (10.1016/j.bpj.2014.09.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Calcein release from (a) POPC or (b) POPC/POPG (2:1) LUVs when exposed to N1 (blue), N2 (green), or melittin (red) peptides. Triton X-100 was added to demonstrate maximum release. To see this figure in color, go online. Biophysical Journal 2014 107, 2313-2324DOI: (10.1016/j.bpj.2014.09.027) Copyright © 2014 Biophysical Society Terms and Conditions