Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles  J.R. Henriksen, T.L. Andresen 

Slides:



Advertisements
Similar presentations
Sandro Keller, Heiko Heerklotz, Nadin Jahnke, Alfred Blume 
Advertisements

Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Anmin Tan, André Ziegler, Bernhard Steinbauer, Joachim Seelig 
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Volume 96, Issue 10, Pages (May 2009)
Binding of Calcium Ions to Bacteriorhodopsin
Monitoring the Structural Behavior of Troponin and Myoplasmic Free Ca2+ Concentration during Twitch of Frog Skeletal Muscle  Tatsuhito Matsuo, Hiroyuki.
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 76, Issue 2, Pages (February 1999)
Yen Sun, Wei-Chin Hung, Fang-Yu Chen, Chang-Chun Lee, Huey W. Huang 
Christina E.B. Caesar, Elin K. Esbjörner, Per Lincoln, Bengt Nordén 
Volume 106, Issue 12, Pages (June 2014)
Volume 95, Issue 12, Pages (December 2008)
Alcohol's Effects on Lipid Bilayer Properties
Volume 113, Issue 6, Pages (September 2017)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Volume 103, Issue 4, Pages (August 2012)
Taylor Fuselier, William C. Wimley  Biophysical Journal 
Jamie M. Dettler, Robert Buscaglia, Vu H. Le, Edwin A. Lewis 
Volume 99, Issue 5, Pages (September 2010)
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity  Sune.
Volume 102, Issue 3, Pages (February 2012)
Volume 105, Issue 8, Pages (October 2013)
Volume 107, Issue 6, Pages (September 2014)
Membrane Thickening by the Antimicrobial Peptide PGLa
EPR Spectroscopy Targets Structural Changes in the E
Volume 92, Issue 9, Pages (May 2007)
Agata Witkowska, Reinhard Jahn  Biophysical Journal 
Volume 97, Issue 1, Pages (July 2009)
Kevin Lum, Helgi I. Ingólfsson, Roger E. Koeppe, Olaf S. Andersen 
Volume 109, Issue 5, Pages (September 2015)
Giant Unilamellar Vesicles Formed by Hybrid Films of Agarose and Lipids Display Altered Mechanical Properties  Rafael B. Lira, Rumiana Dimova, Karin A.
Michael Katzer, William Stillwell  Biophysical Journal 
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Volume 106, Issue 3, Pages (February 2014)
Variable-Field Analytical Ultracentrifugation: I
V.P. Ivanova, I.M. Makarov, T.E. Schäffer, T. Heimburg 
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Pavanjeet Kaur, Yaqiong Li, Jianfeng Cai, Likai Song 
Heiko Heerklotz, Joachim Seelig  Biophysical Journal 
Volume 108, Issue 1, Pages 5-9 (January 2015)
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 95, Issue 9, Pages (November 2008)
Erik Hellstrand, Emma Sparr, Sara Linse  Biophysical Journal 
Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity  M. Meier,
Volume 96, Issue 2, Pages (January 2009)
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Volume 96, Issue 11, Pages (June 2009)
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Binding-Linked Protonation of a DNA Minor-Groove Agent
Volume 80, Issue 5, Pages (May 2001)
Volume 95, Issue 7, Pages (October 2008)
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
Volume 109, Issue 9, Pages (November 2015)
Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Mikyung Han, Yuan Mei, Htet Khant, Steven J. Ludtke 
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 97, Issue 5, Pages (September 2009)
Alexander Spaar, Christian Münster, Tim Salditt  Biophysical Journal 
Volume 94, Issue 11, Pages (June 2008)
Volume 108, Issue 4, Pages (February 2015)
Volume 100, Issue 5, Pages (March 2011)
Electroformation of Giant Vesicles from an Inverse Phase Precursor
Volume 96, Issue 3, Pages (February 2009)
Hong Xing You, Xiaoyang Qi, Gregory A. Grabowski, Lei Yu 
Presentation transcript:

Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles  J.R. Henriksen, T.L. Andresen  Biophysical Journal  Volume 101, Issue 1, Pages 100-109 (July 2011) DOI: 10.1016/j.bpj.2011.05.047 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Illustration of an amphipathic peptide interacting with a lipid membrane. The peptide, which is shown in alternating blue and red to illustrate hydrophobic and hydrophilic amino acid residues, respectively, initially partitions onto the lipid membrane resulting in a conformational change of the peptide. Above the critical peptide/lipid ratio, (P/L)∗, the peptide inserts into the membrane and forms a pore. The insertion and pore formation are governed by the effective partition coefficient (Keff) and the pore-formation threshold (P/L)∗. Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Heat of partitioning of MPX onto POPC/POPG (3:1) LUVs resolved by ITC. (A) Calorimetric heat traces are shown for the partitioning of MPX as a function of temperature (5 × 5 μL 100 μM MPX injected into 204 μL 0.75 mM LUVs). (B) The average molar heat of partitioning, obtained by integration of the calorimetric heat traces shown in A. (C) The molar heat of partitioning is shown as a function of the peptide/lipid ratio (P/L) (ninj is the amount of peptide injected). Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 ITC heat traces of POPC/POPG (3:1) LUVs injected into MPX solution. (A) Calorimetric heat traces of lipid-into-peptide titrations conducted at 15°C, 20°C, and 25°C (38 × 1 μL 18.9 mM POPC/POPG (1:3) injected into 204 μL 100 μM MPX). (B and C) Integrated heat trace (Q) (B) and accumulated molar heat (Qacc/ncell) (C) are shown as a function of the lipid/peptide ratio (L/P). The threshold (L/P)∗ at which pores cease to exist (or are formed if titrated oppositely) at 20°C, is indicated by a dashed vertical line in C. The pore formation energy is denoted by Qpore. The integrated heat of injection (Qacc) in C is normalized with respect to the moles of peptide in the ITC cell (ncell). Lines serve to guide the eye. Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 ITC heat traces of MPX injected into POPC/POPG (3:1) LUVs at three temperatures and three peptide and lipid concentrations. (A and B) Calorimetric heat traces (A) and normalized heat of injection (B) for 250 μM MPX injected into 190 μM LUVs, 500 μM MPX injected into 380 μM LUVs, and 1000 μM MPX injected into 760 μM LUVs at 20°C (38 × 1 μL MPX injections into 204 μL LUVs). (C and D) Calorimetric heat traces (C) and integrated heat of injection (D) for 500 μM MPX injected into 380 μM LUVs at 20°C, 25°C, and 30°C (38 × 1 μL MPX injections into 204 μL LUVs). The pore-formation onset, (P/L)∗, is indicated by a vertical dashed line in B. The integrated heat of injection (Q) has been normalized with respect to the moles of injected peptide (ninj). Lines in B and D serve to guide the eye. Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 ITC heat trace of MPX interacting with POPC/POPG (3:1) LUVs conducted at 25°C. (A) Calorimetric heat trace of 10 mM MPX peptide solution injected into 7.5 mM LUVs (38 × 1 μL MPX injections into 204 μL LUVs). (B) Heat (Q) normalized with respect to the moles of injected peptide (ninj) for 1 mM and 10 mM MPX titrated into 0.75 mM and 7.5 mM LUVs, respectively. In B, the heat trace has been divided into three sections: a partition range, a pore range, and a pore/micellar range. Letter labels A–G correspond to certain peptide/lipid ratios (P/L) that were analyzed by cryo-TEM. Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 Cryo-TEM images of MPX peptide and POPC/POPG (3:1) lipid aggregates vitrified at 25°C. (A and B) Uni- and multilamellar liposomes with an average size of ∼100 nm are shown at P/L = 0, Clip = 7.5 mM (A) and P/L = 0.025, Clip = 7.5 mM (B). (C and D) The presence of membrane pores is observed at P/L = 0.06, Clip = 7.5 mM (C) and P/L = 0.12, Clip = 7.5 mM (D), where fenestration of the liposome membrane and patterning of the liposome interior can be seen. (E and F) At higher peptide/lipid ratios, the peptide-lipid aggregates change morphology from lamellar to networks of wormlike micelles (E) (P/L = 0.24, Clip = 7.5 mM) or globular micelles (F) (P/L = 0.60, Clip = 7.5 mM). (G) A fenestrated multilamellar membrane system can be seen at P/L = 0.24, Clip = 0.75 mM. (H and I) Magnifications of the vesicles imaged in D and A, respectively. Arrows in H point to positions on the membrane with diminished contrast, attributed to aqueous pores spanning the membrane. Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 7 (A) Cryo-TEM images of the aqueous background, membrane pores, and wormlike micelles. (B) Power spectra as a function of the spatial frequency, S, of the images in A.The spectra for cryo-TEM images acquired at P/L = 0.12 at Clip = 7.5 mM and P/L = 0.24 at Clip = 0.75 mM show a distinct peak above the background at S ∈ [0.005 Å−1; 0.015 Å−1]. This main peak corresponds to a characteristic length of 66–200 Å, which is attributed to the presence of pores in the membrane. The wormlike structure (P/L = 0.24 at Clip = 7.5 mM) shows a broader peak (B), corresponding to a more disordered structure. Biophysical Journal 2011 101, 100-109DOI: (10.1016/j.bpj.2011.05.047) Copyright © 2011 Biophysical Society Terms and Conditions