Volume 60, Issue 4, Pages (November 2008)

Slides:



Advertisements
Similar presentations
Volume 86, Issue 5, Pages (June 2015)
Advertisements

Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Volume 97, Issue 6, Pages e5 (March 2018)
Guangying K. Wu, Pingyang Li, Huizhong W. Tao, Li I. Zhang  Neuron 
Volume 49, Issue 6, Pages (March 2006)
Volume 71, Issue 5, Pages (September 2011)
Functional Convergence at the Retinogeniculate Synapse
Volume 52, Issue 3, Pages (November 2006)
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Control of Inhibitory Synaptic Outputs by Low Excitability of Axon Terminals Revealed by Direct Recording  Shin-ya Kawaguchi, Takeshi Sakaba  Neuron 
Volume 82, Issue 6, Pages (June 2014)
Jorge E. Ramirez, Brandon M. Stell  Cell Reports 
Involvement of Mossy Cells in Sharp Wave-Ripple Activity In Vitro
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex
Christian Lohmann, Tobias Bonhoeffer  Neuron 
Michael B. Hoppa, Geraldine Gouzer, Moritz Armbruster, Timothy A. Ryan 
Hai-Yan He, Wanhua Shen, Masaki Hiramoto, Hollis T. Cline  Neuron 
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Hiroshi Makino, Roberto Malinow  Neuron 
Aleksander Sobczyk, Karel Svoboda  Neuron 
Volume 96, Issue 4, Pages e5 (November 2017)
M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels  Andrew J. Giessel, Bernardo.
Volume 44, Issue 2, Pages (October 2004)
Spontaneous Activity Drives Local Synaptic Plasticity In Vivo
Volume 89, Issue 5, Pages (March 2016)
Recruitment of N-Type Ca2+ Channels during LTP Enhances Low Release Efficacy of Hippocampal CA1 Perforant Path Synapses  Mohsin S. Ahmed, Steven A. Siegelbaum 
Volume 45, Issue 1, Pages (January 2005)
Volume 67, Issue 6, Pages (September 2010)
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Volume 46, Issue 1, Pages (April 2005)
Subcellular Dynamics of Type II PKA in Neurons
Anubhuti Goel, Dean V. Buonomano  Neuron 
Volume 50, Issue 3, Pages (May 2006)
Volume 146, Issue 5, Pages (September 2011)
Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains
Georg B. Keller, Tobias Bonhoeffer, Mark Hübener  Neuron 
Volume 74, Issue 2, Pages (April 2012)
Volume 66, Issue 1, Pages (April 2010)
Volume 146, Issue 5, Pages (September 2011)
Noam E. Ziv, Stephen J Smith  Neuron 
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Zhenglin Gu, Jerrel L. Yakel  Neuron 
Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis  Ryosuke.
Endocannabinoids Mediate Neuron-Astrocyte Communication
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Volume 50, Issue 3, Pages (May 2006)
Susana Gomis-Rüth, Corette J. Wierenga, Frank Bradke  Current Biology 
Shen Tang, Ryohei Yasuda  Neuron 
Stephan D. Brenowitz, Wade G. Regehr  Neuron 
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Ashkan Javaherian, Hollis T. Cline  Neuron 
Dario Maschi, Vitaly A. Klyachko  Neuron 
Jorge E. Ramirez, Brandon M. Stell  Cell Reports 
Volume 52, Issue 2, Pages (October 2006)
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Volume 68, Issue 4, Pages (November 2010)
Volume 58, Issue 1, Pages (April 2008)
Volume 44, Issue 5, Pages (December 2004)
Functional MRI Evidence for LTP-Induced Neural Network Reorganization
Volume 64, Issue 4, Pages (November 2009)
Volume 78, Issue 3, Pages (May 2013)
Hiroto Takahashi, Jeffrey C. Magee  Neuron 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Anubhuti Goel, Dean V. Buonomano  Neuron 
Multisensory Integration in the Mouse Striatum
Volume 54, Issue 1, Pages (April 2007)
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Presentation transcript:

Volume 60, Issue 4, Pages 590-597 (November 2008) LTD Induction Causes Morphological Changes of Presynaptic Boutons and Reduces Their Contacts with Spines  Nadine Becker, Corette J. Wierenga, Rosalina Fonseca, Tobias Bonhoeffer, U. Valentin Nägerl  Neuron  Volume 60, Issue 4, Pages 590-597 (November 2008) DOI: 10.1016/j.neuron.2008.09.018 Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 1 Axonal Varicosities Mark Functional Synapses on Schaffer Collaterals (A) Maximal intensity projection of three subsequent confocal sections (Δz = 0.5 μm) of a hippocampal slice culture, immunostained for α-synapsin displayed in magenta and for eGFP in green (overlapping pixels are white). Inset shows zoom-in on axonal stretch. Scale bar, 2 μm. (B) Correlated light and ssEM, the upper panel shows the light microscopic image of a stretch of a labeled axon, the middle panel shows the corresponding stretch reconstructed by ssEM, and the lower two panels show EM images of two varicosities (b) that form asymmetric synapses with postsynaptic spines (s), the arrowheads marking the postsynaptic densities. Scale bars, 10 μm, 1 μm and 200 nm. (C) Ca2+ imaging reveals AP-induced Ca2+ signals in boutons. Normalized fluorescence intensity traces; colors correspond to the regions of interest depicted in the image. Lines in respective colors indicate the 2× SD threshold. Scale bars, 10 μm and 2 μm. Neuron 2008 60, 590-597DOI: (10.1016/j.neuron.2008.09.018) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 2 Structural Plasticity of Boutons after LTD Induction (A) Schematic illustrating the experimental paradigm. Red pipette: extracellular pressure injection of Calcein red-orange AM in the CA3 area. Yellow pipettes: stimulation (left) and recording (right) electrodes after labeling was finished. (B) Normalized and averaged fEPSP slopes (mean ± SEM) for all control (gray symbols) and LTD experiments (black symbols). Inset shows raw data traces before (a) and after (b) induction of LTD. (C and D) Maximum intensity projections (MIPs) of labeled Schaffer collateral axons. (E) Higher magnification of the box marked in (D) showing the emergence of a bouton (arrowhead). The graphs next to each example show the corresponding intensity plots along the parent axon before (gray) and after (black) LTD induction. Arrowheads indicate the intensity peaks of the respective boutons. Eleven sections were used for the MIPs in (C) and (D), and nine sections in (E) and (F), the Δz spacing was 0.5 μm. All scale bars 2 μm, unless otherwise indicated. (F) Higher magnification of the box marked in (C) showing the loss of two boutons (arrowheads) after LTD induction. (G) Summary of bouton turnover for the various experimental conditions (bouton gain in red; bouton loss in blue). (H) Time course of bouton turnover (mean ± SEM; bouton gain in red; bouton loss in blue). (I) Volume (mean ± SEM) of stable control boutons (gray bar), lost and gained boutons after LTD (black bars). (J) Distance to the nearest neighboring bouton (median ± SD) for all (gray bar), simulated lost and gained (sim.; white bars), and measured lost and gained (meas.; black bars) boutons after LTD. In all panels and following figures: asterisks indicate significant differences: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. (K) AP-induced Ca2+ imaging of a new and a preexisting bouton. Normalized fluorescence intensity traces; colors correspond to the regions of interest depicted in the image. Lines in respective colors indicate the 2× SD threshold. Neuron 2008 60, 590-597DOI: (10.1016/j.neuron.2008.09.018) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 3 LTD-Induced Presynaptic Structural Plasticity in Identified Bouton-Spine Pairs All images are single sections, chosen for best focal plane. White arrows indicate the bouton-spine pair of interest. (A) Stable bouton-spine pair under unstimulated control conditions. (B and C) Examples of bouton loss (B) and bouton gain (C) in bouton-spine pairs after LTD induction. (D) Percentage of the total number of bouton-spine pairs lost (blue) or gained (red) under LTD and control conditions (mean ± SEM). Neuron 2008 60, 590-597DOI: (10.1016/j.neuron.2008.09.018) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 4 Characterization of the Volume Changes of Boutons Associated with Plastic Spines (A) Example of spine loss from a bouton-spine pair. (B) Changes in bouton volumes for stable pairs (control) and pairs in which the spine was lost or gained after LTD. Neighboring boutons that were close but not in contact with the retracting spines did not undergo any significant change in volume (striped gray bar). (C) Volume changes shown in (B) plotted for individual boutons (n = 10). (D) Changes in spine volumes (mean ± SEM) for stable pairs (control) and pairs in which the bouton was lost or gained after LTD. Neuron 2008 60, 590-597DOI: (10.1016/j.neuron.2008.09.018) Copyright © 2008 Elsevier Inc. Terms and Conditions