Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.

Slides:



Advertisements
Similar presentations
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Advertisements

Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Hypoxia reduces the inhibitory effect of IL-1β on chondrogenic differentiation of FCS- free expanded MSC  T. Felka, R. Schäfer, B. Schewe, K. Benz, W.K.
Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling  T.-L. Tsai, P.A. Manner,
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3  E.G. Lima, M.Phil., M.S., L. Bian,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Hypoxia reduces the inhibitory effect of IL-1β on chondrogenic differentiation of FCS- free expanded MSC  T. Felka, R. Schäfer, B. Schewe, K. Benz, W.K.
Patterning Stem Cell Differentiation
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Subtractive gene expression profiling of articular cartilage and mesenchymal stem cells: serpins as cartilage-relevant differentiation markers  S. Boeuf,
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs  M.J. Farrell, J.I. Shin, L.J.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage.
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro  L. Rackwitz, F. Djouad, S.
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs  A. Krase, R.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation  U. Freymann, M. Endres,
Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality  E.J. Koay, Ph.D.,
Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation  A.
Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture  R. Andriamanalijaona, Ph.D., E. Duval,
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
J. P. H. J. Rutges, R. A. Duit, J. A. Kummer, F. C. Oner, M. H
R.S. Cosden-Decker, M.M. Bickett, C. Lattermann, J.N. MacLeod 
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells  Y. Chang, M.D., S.W.N.
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
J.E. Jeon, K. Schrobback, D.W. Hutmacher, T.J. Klein 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro  Kensuke Ochi, M.D., Ph.D.,
Osteoarthritis and Cartilage
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
Stem cell therapy for human cartilage defects: a systematic review
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
M. A. Cleary, R. Narcisi, K. Focke, R. van der Linden, P. A. J
Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications 
Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations  L.M. Kock, A. Ravetto, C.C. van Donkelaar, J.
Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds  G. Feng, L. Li, H.
S.D. Waldman, J. Usprech, L.E. Flynn, A.A. Khan 
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Development of growth factor tethered hyaluronan microspheres for in situ chondrogenic differentiation of human mesenchymal stem cells  S. Ansboro, J.S.
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 
Optimal ratio of adipose stem cells and bone marrow stem cell to promote osteogenic differentiation and angiogenesis  G.-I. Im, K.-I. Kim, N.-H. Jo  Osteoarthritis.
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy  M.E. Cooke,
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion  W.L. Grayson, S. Bhumiratana, P.H. Grace Chao, C.T. Hung, G. Vunjak-Novakovic  Osteoarthritis and Cartilage  Volume 18, Issue 5, Pages 714-723 (May 2010) DOI: 10.1016/j.joca.2010.01.008 Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Experimental design. (A) Biphasic scaffold made by interfacing agarose and trabecular bone scaffolds. (B) Perfusion bioreactor for cultivation of biphasic scaffolds. Enlarged view shows predicted path of medium flow through the scaffolds and through the sides into the reservoir. (C) Schematic of experimental design. Osteoarthritis and Cartilage 2010 18, 714-723DOI: (10.1016/j.joca.2010.01.008) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Cell differentiation studies. (A–C) Morphology of hMSCs cultured using (A) expansion medium, (B) osteogenic supplements and (C) chondrogenic supplements. (D–F) Von Kossa staining of pellets cultured under osteogenic conditions for 4 weeks. (G–I) Alcian Blue staining of pellets cultured under chondrogenic conditions for 4 weeks. Osteoarthritis and Cartilage 2010 18, 714-723DOI: (10.1016/j.joca.2010.01.008) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Quantitative properties of cartilage region. (A) GAG content of gels normalized by wet weight. (B) Equilibrium modulus. (C) DNA content normalized by wet weight. (D) BV of gels measured by μ-CT. (n=3; *P<0.05; **P<0.001) (E) Table of GAG expression and equilibrium modulus values normalized to DNA (n=3; *P<0.05 as compared to the experimental groups using the same culture medium). Osteoarthritis and Cartilage 2010 18, 714-723DOI: (10.1016/j.joca.2010.01.008) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Representative images of immunohistochemical properties of cartilage region. First row: H&E staining. Second row: Alcian Blue staining for GAG content. Third row: collagen II expression. Fourth row: collagen×expression. Fifth row: BSP expression. Osteoarthritis and Cartilage 2010 18, 714-723DOI: (10.1016/j.joca.2010.01.008) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Representative images of immunohistochemical properties of bone region. First row: H&E staining. Second row: Alcian Blue staining for GAG content. Third row: collagen I expression in gels. Fourth row: BSP expression. Osteoarthritis and Cartilage 2010 18, 714-723DOI: (10.1016/j.joca.2010.01.008) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Integration of bone and cartilage regions. (A) Integration region of static constructs (UD-S-C) is mostly acellular. (B) High magnification image of region indicated by box in (A) showing different morphologies in gel and scaffold regions and minimal GAG expression. (C) Integration between cartilage and bone is enhanced under bioreactor conditions. (D) High magnification image of region indicated by box in (C) shows high matrix production in central regions of integration zone. Distinct spherical morphology in gel is indicated by * whereas the elongated, fibrous morphology is evident in regions close to bone by arrows (↑). Osteoarthritis and Cartilage 2010 18, 714-723DOI: (10.1016/j.joca.2010.01.008) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions